Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/DJSammy/bert-base-danish-uncased_BotXO,ai/README.md
README.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: da
|
3 |
+
tags:
|
4 |
+
- bert
|
5 |
+
- masked-lm
|
6 |
+
license: cc-by-4.0
|
7 |
+
datasets:
|
8 |
+
- common_crawl
|
9 |
+
- wikipedia
|
10 |
+
pipeline_tag: fill-mask
|
11 |
+
widget:
|
12 |
+
- text: "København er [MASK] i Danmark."
|
13 |
+
---
|
14 |
+
|
15 |
+
# Danish BERT (uncased) model
|
16 |
+
|
17 |
+
[BotXO.ai](https://www.botxo.ai/) developed this model. For data and training details see their [GitHub repository](https://github.com/botxo/nordic_bert).
|
18 |
+
|
19 |
+
The original model was trained in TensorFlow then I converted it to Pytorch using [transformers-cli](https://huggingface.co/transformers/converting_tensorflow_models.html?highlight=cli).
|
20 |
+
|
21 |
+
For TensorFlow version download here: https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1
|
22 |
+
|
23 |
+
|
24 |
+
## Architecture
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoModelForPreTraining
|
28 |
+
|
29 |
+
model = AutoModelForPreTraining.from_pretrained("DJSammy/bert-base-danish-uncased_BotXO,ai")
|
30 |
+
|
31 |
+
params = list(model.named_parameters())
|
32 |
+
print('danish_bert_uncased_v2 has {:} different named parameters.\n'.format(len(params)))
|
33 |
+
|
34 |
+
print('==== Embedding Layer ====\n')
|
35 |
+
for p in params[0:5]:
|
36 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
37 |
+
|
38 |
+
print('\n==== First Transformer ====\n')
|
39 |
+
for p in params[5:21]:
|
40 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
41 |
+
|
42 |
+
print('\n==== Last Transformer ====\n')
|
43 |
+
for p in params[181:197]:
|
44 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
45 |
+
|
46 |
+
print('\n==== Output Layer ====\n')
|
47 |
+
for p in params[197:]:
|
48 |
+
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
|
49 |
+
|
50 |
+
# danish_bert_uncased_v2 has 206 different named parameters.
|
51 |
+
|
52 |
+
# ==== Embedding Layer ====
|
53 |
+
|
54 |
+
# bert.embeddings.word_embeddings.weight (32000, 768)
|
55 |
+
# bert.embeddings.position_embeddings.weight (512, 768)
|
56 |
+
# bert.embeddings.token_type_embeddings.weight (2, 768)
|
57 |
+
# bert.embeddings.LayerNorm.weight (768,)
|
58 |
+
# bert.embeddings.LayerNorm.bias (768,)
|
59 |
+
|
60 |
+
# ==== First Transformer ====
|
61 |
+
|
62 |
+
# bert.encoder.layer.0.attention.self.query.weight (768, 768)
|
63 |
+
# bert.encoder.layer.0.attention.self.query.bias (768,)
|
64 |
+
# bert.encoder.layer.0.attention.self.key.weight (768, 768)
|
65 |
+
# bert.encoder.layer.0.attention.self.key.bias (768,)
|
66 |
+
# bert.encoder.layer.0.attention.self.value.weight (768, 768)
|
67 |
+
# bert.encoder.layer.0.attention.self.value.bias (768,)
|
68 |
+
# bert.encoder.layer.0.attention.output.dense.weight (768, 768)
|
69 |
+
# bert.encoder.layer.0.attention.output.dense.bias (768,)
|
70 |
+
# bert.encoder.layer.0.attention.output.LayerNorm.weight (768,)
|
71 |
+
# bert.encoder.layer.0.attention.output.LayerNorm.bias (768,)
|
72 |
+
# bert.encoder.layer.0.intermediate.dense.weight (3072, 768)
|
73 |
+
# bert.encoder.layer.0.intermediate.dense.bias (3072,)
|
74 |
+
# bert.encoder.layer.0.output.dense.weight (768, 3072)
|
75 |
+
# bert.encoder.layer.0.output.dense.bias (768,)
|
76 |
+
# bert.encoder.layer.0.output.LayerNorm.weight (768,)
|
77 |
+
# bert.encoder.layer.0.output.LayerNorm.bias (768,)
|
78 |
+
|
79 |
+
# ==== Last Transformer ====
|
80 |
+
|
81 |
+
# bert.encoder.layer.11.attention.self.query.weight (768, 768)
|
82 |
+
# bert.encoder.layer.11.attention.self.query.bias (768,)
|
83 |
+
# bert.encoder.layer.11.attention.self.key.weight (768, 768)
|
84 |
+
# bert.encoder.layer.11.attention.self.key.bias (768,)
|
85 |
+
# bert.encoder.layer.11.attention.self.value.weight (768, 768)
|
86 |
+
# bert.encoder.layer.11.attention.self.value.bias (768,)
|
87 |
+
# bert.encoder.layer.11.attention.output.dense.weight (768, 768)
|
88 |
+
# bert.encoder.layer.11.attention.output.dense.bias (768,)
|
89 |
+
# bert.encoder.layer.11.attention.output.LayerNorm.weight (768,)
|
90 |
+
# bert.encoder.layer.11.attention.output.LayerNorm.bias (768,)
|
91 |
+
# bert.encoder.layer.11.intermediate.dense.weight (3072, 768)
|
92 |
+
# bert.encoder.layer.11.intermediate.dense.bias (3072,)
|
93 |
+
# bert.encoder.layer.11.output.dense.weight (768, 3072)
|
94 |
+
# bert.encoder.layer.11.output.dense.bias (768,)
|
95 |
+
# bert.encoder.layer.11.output.LayerNorm.weight (768,)
|
96 |
+
# bert.encoder.layer.11.output.LayerNorm.bias (768,)
|
97 |
+
|
98 |
+
# ==== Output Layer ====
|
99 |
+
|
100 |
+
# bert.pooler.dense.weight (768, 768)
|
101 |
+
# bert.pooler.dense.bias (768,)
|
102 |
+
# cls.predictions.bias (32000,)
|
103 |
+
# cls.predictions.transform.dense.weight (768, 768)
|
104 |
+
# cls.predictions.transform.dense.bias (768,)
|
105 |
+
# cls.predictions.transform.LayerNorm.weight (768,)
|
106 |
+
# cls.predictions.transform.LayerNorm.bias (768,)
|
107 |
+
# cls.seq_relationship.weight (2, 768)
|
108 |
+
# cls.seq_relationship.bias (2,)
|
109 |
+
```
|
110 |
+
|
111 |
+
## Example Pipeline
|
112 |
+
|
113 |
+
```python
|
114 |
+
from transformers import pipeline
|
115 |
+
unmasker = pipeline('fill-mask', model='DJSammy/bert-base-danish-uncased_BotXO,ai')
|
116 |
+
|
117 |
+
unmasker('København er [MASK] i Danmark.')
|
118 |
+
|
119 |
+
# Copenhagen is the [MASK] of Denmark.
|
120 |
+
# =>
|
121 |
+
|
122 |
+
# [{'score': 0.788068950176239,
|
123 |
+
# 'sequence': '[CLS] københavn er hovedstad i danmark. [SEP]',
|
124 |
+
# 'token': 12610,
|
125 |
+
# 'token_str': 'hovedstad'},
|
126 |
+
# {'score': 0.07606703042984009,
|
127 |
+
# 'sequence': '[CLS] københavn er hovedstaden i danmark. [SEP]',
|
128 |
+
# 'token': 8108,
|
129 |
+
# 'token_str': 'hovedstaden'},
|
130 |
+
# {'score': 0.04299738258123398,
|
131 |
+
# 'sequence': '[CLS] københavn er metropol i danmark. [SEP]',
|
132 |
+
# 'token': 23305,
|
133 |
+
# 'token_str': 'metropol'},
|
134 |
+
# {'score': 0.008163209073245525,
|
135 |
+
# 'sequence': '[CLS] københavn er ikke i danmark. [SEP]',
|
136 |
+
# 'token': 89,
|
137 |
+
# 'token_str': 'ikke'},
|
138 |
+
# {'score': 0.006238455418497324,
|
139 |
+
# 'sequence': '[CLS] københavn er ogsa i danmark. [SEP]',
|
140 |
+
# 'token': 25253,
|
141 |
+
# 'token_str': 'ogsa'}]
|
142 |
+
```
|