File size: 14,464 Bytes
3981799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# -*- coding: utf-8 -*-
"""UpsideDown.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/12aS57Wk69CKJyuVVNvXjyAU6mPo1dP4_
# Fatima Fellowship Quick Coding Challenge (Pick 1)
Thank you for applying to the Fatima Fellowship. To help us select the Fellows and assess your ability to do machine learning research, we are asking that you complete a short coding challenge. Please pick **1 of these 5** coding challenges, whichever is most aligned with your interests.
**Due date: 1 week**
**How to submit**: Please make a copy of this colab notebook, add your code and results, and submit your colab notebook to the submission link below. If you have never used a colab notebook, [check out this video](https://www.youtube.com/watch?v=i-HnvsehuSw).
**Submission link**: https://airtable.com/shrXy3QKSsO2yALd3
# 1. Deep Learning for Vision
**Upside down detector**: Train a model to detect if images are upside down
* Pick a dataset of natural images (we suggest looking at datasets on the [Hugging Face Hub](https://huggingface.co/datasets?task_categories=task_categories:image-classification&sort=downloads))
* Synthetically turn some of images upside down. Create a training and test set.
* Build a neural network (using Tensorflow, PyTorch, or any framework you like)
* Train it to classify image orientation until a reasonable accuracy is reached
* [Upload the the model to the Hugging Face Hub](https://huggingface.co/docs/hub/adding-a-model), and add a link to your model below.
* Look at some of the images that were classified incorrectly. Please explain what you might do to improve your model's performance on these images in the future (you do not need to impelement these suggestions)
**Submission instructions**: Please write your code below and include some examples of images that were classified
# Upside down detector: Train a model to detect if images are upside down
* Pick a dataset of natural images \
Pick a dataset of natural images (we suggest looking at datasets on the Hugging Face Hub) \
We chose a fine-grained images dataset of faces \
description:
My model is an inverted image detector and can help detect if images are inverted with 99% accuracy. \
I used a dataset containing people with and without masks. I trained my model on ~ 300 images of people without masks and tested it on ~ 60 of the same images distribution: \
author = {Prasoon Kottarathil}, \
title = {Face Mask Lite Dataset}, \
year = {2020}, \
publisher = {kaggle}, \
journal = {Kaggle Data}, \
how published = {\url{https://www.kaggle.com/prasoonkottarathil/face-mask-lite-dataset}} \
All Images in this dataset are Generated Using Style GAN-2, \
10,000 HD images in each Folder With mask and without mask
* Synthetically turn some of images upside down. Create a training and test set.
* Build a neural network (using Tensorflow, PyTorch, or any framework you like)
* Train it to classify image orientation until a reasonable accuracy is reached
* [Upload the the model to the Hugging Face Hub](https://huggingface.co/docs/hub/adding-a-model), and add a link to your model below.
link: https://huggingface.co/DIANKHA/upside-down/tree/main
Synthetically turn some of images upside down. Create a training and test set.
"""
import os
def makedir(path):
if not os.path.exists(path):
os.makedirs(path)
makedir('./without_mask')
from google.colab import drive
drive.mount('/content/drive')
# Commented out IPython magic to ensure Python compatibility.
### WRITE YOUR CODE TO TRAIN THE MODEL HERE
#Imports
import os
import sys
from glob import glob
import torch
import torchvision
import numpy as np
import datetime as dt
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import cv2
from PIL import Image
from torch.utils.data import Dataset
from torch.autograd import Variable
from torch.optim import lr_scheduler
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import transforms, datasets, models
from os import listdir, makedirs, getcwd, remove
from os.path import isfile, join, abspath, exists, isdir, expanduser
from torchvision.transforms.functional import vflip
from PIL import Image
from torch.utils.data import random_split
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
np.random.seed(42)
# %matplotlib inline
data_path = "./without_mask"
images = glob("./without_mask/*.png", recursive=True)
import shutil
!rm -rf ./train_data
!rm -rf ./test_data
makedir('./train_data')
makedir('./test_data')
split = int(np.floor(len(images) * .8))
np.random.seed(22)
N = len(images)
K = split
dst_dir = 'train_data'
for pngfile in images[:split]:
shutil.copy(pngfile, dst_dir)
dst_dir = 'test_data'
for pngfile in images[split:]:
shutil.copy(pngfile, dst_dir)
# Transformations for both the training and testing data
mean=[0.5894, 0.4595, 0.3966]
std=[0.2404, 0.2020, 0.1959]
# Do data transforms here, Try many others
train_transforms = transforms.Compose([transforms.Resize(500),
transforms.ToTensor(),
transforms.Normalize(mean,std)])
test_transforms = transforms.Compose([ transforms.Resize(500),
transforms.ToTensor(),
transforms.Normalize(mean,std)])
class Dataset(Dataset):
def __init__(self, path, transform=None):
self.file_list = glob(path+"*.png", recursive=True)
print(self.file_list)
self.transform = transform
files = []
split = int(np.floor(len(self.file_list) * .5))
N = len(self.file_list)
K = split # K zeros, N-K ones
indices = np.array([0] * K + [1] * (N-K))
np.random.shuffle(indices)
print(indices)
final_pth = path
for idx,img_pth in enumerate(self.file_list):
if indices[idx]:
img = Image.open(img_pth)
img = vflip(img)
img_name = img_pth.split('/')[-1]
img.save(final_pth+img_name, format="png")
files.append([indices[idx],final_pth+img_name])
else:
img = Image.open(img_pth)
img_name = img_pth.split('/')[-1]
img.save(final_pth+img_name, format="png")
files.append([indices[idx],final_pth+img_name])
self.file_list = files
print(self.file_list)
files = None
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
fileName = self.file_list[idx][1]
classCategory = self.file_list[idx][0]
im = Image.open(fileName)
if self.transform:
im = self.transform(im)
return im.view(3, 500, 500), classCategory
train_data = Dataset('./train_data/', transform=train_transforms)
test_data = Dataset('./test_data/', transform=test_transforms)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=32)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=32)
# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Define Models
# Define Models
class Classifier(nn.Module):
def __init__(self, num_classes):
super(Classifier, self).__init__()
# Block 1
self.conv1 = nn.Conv2d(in_channels = 3, out_channels = 32, kernel_size = 5, stride = 2, padding = 2)
self.relu1 = nn.ReLU()
self.maxpool1 = nn.MaxPool2d(kernel_size = 2)
#Block 2
self.conv2 = nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size = 5, stride = 2, padding = 2)
self.relu2 = nn.ReLU()
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
#Block 3
self.conv3 = nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size = 3, stride = 2, padding = 2)
self.relu3 = nn.ReLU()
self.maxpool3 = nn.MaxPool2d(kernel_size=2)
#Block 4
self.conv4 = nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size = 3, stride = 2, padding = 2)
self.relu4 = nn.ReLU()
self.maxpool4 = nn.MaxPool2d(kernel_size=2)
#Block 5
self.conv5 = nn.Conv2d(in_channels = 64, out_channels = 32, kernel_size = 3, stride = 2, padding = 2)
self.relu5 = nn.ReLU()
self.maxpool5 = nn.MaxPool2d(kernel_size=2)
# last fully-connected layer
self.fc = nn.Linear(32, num_classes)
self.dropout = nn.Dropout(.1)
def forward(self, input):
x = self.maxpool1(self.relu1(self.conv1(input)))
x = self.dropout(x)
x = self.maxpool2(self.relu2(self.conv2(x)))
x = self.dropout(x)
x = self.maxpool3(self.relu3(self.conv3(x)))
x = self.dropout(x)
x = self.maxpool4(self.relu4(self.conv4(x)))
x = self.dropout(x)
x = self.maxpool5(self.relu5(self.conv5(x)))
x = self.dropout(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def train(model, criterion, data_loader, optimizer, num_epochs):
"""Simple training loop for a PyTorch model."""
# Make sure model is in training mode.
model.train()
# Move model to the device (CPU or GPU).
model.to(device)
# Exponential moving average of the loss.
ema_loss = None
print('----- Training Loop -----')
# Loop over epochs.
for epoch in range(num_epochs):
# Loop over data.
for batch_idx, (features, target) in enumerate(data_loader):
# Forward pass.
output = model(features.to(device))
output = output.squeeze()
target = target.float()
loss = criterion(output.to(device), target.to(device))
# Backward pass.
optimizer.zero_grad()
loss.backward()
optimizer.step()
# NOTE: It is important to call .item() on the loss before summing.
if ema_loss is None:
ema_loss = loss.item()
else:
ema_loss += (loss.item() - ema_loss) * 0.01
# Print out progress the end of epoch.
print('Epoch: {} \tLoss: {:.6f}'.format(epoch, ema_loss))
def test(model, data_loader):
"""Measures the accuracy of a model on a data set."""
# Make sure the model is in evaluation mode.
model.eval()
correct = 0
print('----- Model Evaluation -----')
# We do not need to maintain intermediate activations while testing.
with torch.no_grad():
# Loop over test data.
for features, target in data_loader:
# Forward pass.
output = model(features.to(device))
# Get the label corresponding to the highest predicted probability.
# pred = output.argmax(dim=1, keepdim=True)
pred = torch.where(output>0.5,torch.ones(output.shape),torch.zeros(output.shape))
# Count number of correct predictions.
correct += pred.cpu().eq(target.view_as(pred)).sum().item()
# Print test accuracy.
percent = 100. * correct / len(data_loader.dataset)
print(f'Test accuracy: {correct} / {len(data_loader.dataset)} ({percent:.0f}%)')
torch.save(model.state_dict(), 'model.ckpt')
return percent
num_epochs = 10
model = Classifier(1)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
train(model, criterion, train_loader, optimizer, num_epochs=num_epochs)
test(model, test_loader)
test(model, train_loader)
"""**Write up**:
* Link to the model on Hugging Face Hub:
* Include some examples of misclassified images. Please explain what you might do to improve your model's performance on these images in the future (you do not need to impelement these suggestions)
"""
model1 = Classifier(1)
model1.load_state_dict(torch.load('./model.ckpt'))
model1.eval() # make sure the model is in evaluation mode
classes = ['no_flip','flip']
test(model1, train_loader)
test(model1, test_loader)
import random
from IPython import display
# Commented out IPython magic to ensure Python compatibility.
def random_predictions(data):
for i in random.sample(range(len(data)),3):
tensor,target = data[i]
if device == "cuda":
tensor = tensor.cuda()
prediction = model1(tensor.unsqueeze(0)).item()
if prediction>.5:
prediction = 1
else:
prediction = 0
print(
"Img %d. Excpected class %s, but predicted class %s."
# % (
i,
classes[target],
classes[prediction],
)
)
img = Image.open(data.file_list[i][1])
img = transforms.Resize(224)(img)
display.display(img)
random_predictions(test_data)
# Commented out IPython magic to ensure Python compatibility.
def false_predictions(data):
for i in range(len(data)):
tensor, target = data[i]
if device == "cuda":
tensor = tensor.cuda()
prediction = model1(tensor.unsqueeze(0)).item()
if prediction>.5:
prediction = 1
else:
prediction = 0
if prediction != target:
print(
"Img id=%d. Excpected class %s, but predicted class %s."
# % (
i,
classes[target],
classes[prediction],
)
)
img = Image.open(data.file_list[i][1])
img = transforms.Resize(224)(img)
display.display(img)
"""* Include some examples of poorly ranked images. Please explain what you could do to improve the performance of your model on these images.
We do not have enough information to comment on this misclassified image in the dataset.
This model was trained on a small dataset of ~300 images and tested on ~60 HD images generated with a GAN.
This dataset has the same distribution and is assumed to be not representive of the wide diversity of images in the real world.
We hope that our model can be useful in the context of creating a profile on a dating site or social network.
Our model could be improved by increasing the size and diversity of the training dataset.
"""
false_predictions(train_data)
addition_data = Dataset('./subset_without_mask/', transform=train_transforms)
false_predictions(addition_data)
|