language:
- en
- zh
license: other
tags:
- chat
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: magnum-72b-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 76.06
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 57.65
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 35.27
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.79
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.62
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
name: Open LLM Leaderboard
Quantized model => https://huggingface.co/anthracite-org/magnum-v1-72b
Quantization Details:
Quantization is done using turboderp's ExLlamaV2 v0.1.8.
I use the default calibration datasets and arguments. The repo also includes a "measurement.json" file, which was used during the quantization process.
For models with bits per weight (BPW) over 6.0, I default to quantizing the lm_head
layer at 8 bits instead of the standard 6 bits.
Who are you? What's with these weird BPWs on [insert model here]?
I specialize in optimized EXL2 quantization for models in the 70B to 100B+ range, specifically tailored for 48GB VRAM setups. My rig is built using 2 x 3090s with a Ryzen APU (APU used solely for desktop output—no VRAM wasted on the 3090s). I use TabbyAPI for inference, targeting context sizes between 32K and 64K.
Every model I upload includes a config.yml
file with my ideal TabbyAPI settings. If you're using my config, don’t forget to set PYTORCH_CUDA_ALLOC_CONF=backend:cudaMallocAsync
to save some VRAM.