DBMe commited on
Commit
d8ce357
·
verified ·
1 Parent(s): 7f77f88

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -247
README.md CHANGED
@@ -17,258 +17,20 @@ language:
17
  extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
18
  ---
19
 
20
- # Model Card for Mistral-Large-Instruct-2407
21
 
22
- Mistral-Large-Instruct-2407 is an advanced dense Large Language Model (LLM) of 123B parameters with state-of-the-art reasoning, knowledge and coding capabilities.
 
23
 
24
- For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-large-2407/).
25
 
26
- ## Key features
27
- - **Multi-lingual by design:** Dozens of languages supported, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch and Polish.
28
- - **Proficient in coding:** Trained on 80+ coding languages such as Python, Java, C, C++, Javacsript, and Bash. Also trained on more specific languages such as Swift and Fortran.
29
- - **Agentic-centric:** Best-in-class agentic capabilities with native function calling and JSON outputting.
30
- - **Advanced Reasoning:** State-of-the-art mathematical and reasoning capabilities.
31
- - **Mistral Research License:** Allows usage and modification for research and non-commercial usages.
32
- - **Large Context:** A large 128k context window.
33
 
34
- ## Metrics
35
 
36
- ### Base Pretrained Benchmarks
37
 
38
- | Benchmark | Score |
39
- | --- | --- |
40
- | MMLU | 84.0% |
41
-
42
-
43
- ### Base Pretrained Multilingual Benchmarks (MMLU)
44
- | Benchmark | Score |
45
- | --- | --- |
46
- | French | 82.8% |
47
- | German | 81.6% |
48
- | Spanish | 82.7% |
49
- | Italian | 82.7% |
50
- | Dutch | 80.7% |
51
- | Portuguese | 81.6% |
52
- | Russian | 79.0% |
53
- | Korean | 60.1% |
54
- | Japanese | 78.8% |
55
- | Chinese | 74.8% |
56
-
57
-
58
- ### Instruction Benchmarks
59
-
60
- | Benchmark | Score |
61
- | --- | --- |
62
- | MT Bench | 8.63 |
63
- | Wild Bench | 56.3 |
64
- | Arena Hard| 73.2 |
65
-
66
- ### Code & Reasoning Benchmarks
67
- | Benchmark | Score |
68
- | --- | --- |
69
- | Human Eval | 92% |
70
- | Human Eval Plus| 87% |
71
- | MBPP Base| 80% |
72
- | MBPP Plus| 69% |
73
-
74
- ### Math Benchmarks
75
-
76
- | Benchmark | Score |
77
- | --- | --- |
78
- | GSM8K | 93% |
79
- | Math Instruct (0-shot, no CoT) | 70% |
80
- | Math Instruct (0-shot, CoT)| 71.5% |
81
-
82
- ## Usage
83
-
84
- The model can be used with two different frameworks
85
-
86
- - [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
87
- - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
88
-
89
- ### Mistral Inference
90
-
91
- #### Install
92
-
93
- It is recommended to use `mistralai/Mistral-Large-Instruct-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
94
-
95
- ```
96
- pip install mistral_inference
97
- ```
98
-
99
- #### Download
100
-
101
- ```py
102
- from huggingface_hub import snapshot_download
103
- from pathlib import Path
104
-
105
- mistral_models_path = Path.home().joinpath('mistral_models', 'Large')
106
- mistral_models_path.mkdir(parents=True, exist_ok=True)
107
-
108
- snapshot_download(repo_id="mistralai/Mistral-Large-Instruct-2407", allow_patterns=["params.json", "consolidated-*.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
109
- ```
110
-
111
- #### Chat
112
-
113
- After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment.
114
- Given the size of this model, you will need a node with several GPUs (more than 300GB cumulated vRAM).
115
- If you have 8 GPUs on your machine, you can chat with the model using
116
-
117
- ```
118
- torchrun --nproc-per-node 8 --no-python mistral-chat $HOME/mistral_models/Large --instruct --max_tokens 256 --temperature 0.7
119
- ```
120
-
121
- *E.g.* Try out something like:
122
- ```
123
- How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.
124
- ```
125
-
126
- #### Instruct following
127
-
128
- ```py
129
- from mistral_inference.transformer import Transformer
130
- from mistral_inference.generate import generate
131
-
132
- from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
133
- from mistral_common.protocol.instruct.messages import UserMessage
134
- from mistral_common.protocol.instruct.request import ChatCompletionRequest
135
-
136
- tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
137
- model = Transformer.from_folder(mistral_models_path)
138
-
139
- prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."
140
-
141
- completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])
142
-
143
- tokens = tokenizer.encode_chat_completion(completion_request).tokens
144
-
145
- out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.7, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
146
- result = tokenizer.decode(out_tokens[0])
147
-
148
- print(result)
149
- ```
150
-
151
- #### Function calling
152
-
153
- ```py
154
- from mistral_common.protocol.instruct.tool_calls import Function, Tool
155
- from mistral_inference.transformer import Transformer
156
- from mistral_inference.generate import generate
157
-
158
- from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
159
- from mistral_common.protocol.instruct.messages import UserMessage
160
- from mistral_common.protocol.instruct.request import ChatCompletionRequest
161
-
162
-
163
- tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
164
- model = Transformer.from_folder(mistral_models_path)
165
-
166
- completion_request = ChatCompletionRequest(
167
- tools=[
168
- Tool(
169
- function=Function(
170
- name="get_current_weather",
171
- description="Get the current weather",
172
- parameters={
173
- "type": "object",
174
- "properties": {
175
- "location": {
176
- "type": "string",
177
- "description": "The city and state, e.g. San Francisco, CA",
178
- },
179
- "format": {
180
- "type": "string",
181
- "enum": ["celsius", "fahrenheit"],
182
- "description": "The temperature unit to use. Infer this from the users location.",
183
- },
184
- },
185
- "required": ["location", "format"],
186
- },
187
- )
188
- )
189
- ],
190
- messages=[
191
- UserMessage(content="What's the weather like today in Paris?"),
192
- ],
193
- )
194
-
195
- tokens = tokenizer.encode_chat_completion(completion_request).tokens
196
-
197
- out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.7, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
198
- result = tokenizer.decode(out_tokens[0])
199
-
200
- print(result)
201
- ```
202
-
203
- ### Transformers
204
-
205
- If you want to use Hugging Face `transformers` to generate text, you can do something like this.
206
-
207
- ```py
208
- from transformers import pipeline
209
-
210
- messages = [
211
- {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
212
- {"role": "user", "content": "Who are you?"},
213
- ]
214
- chatbot = pipeline("text-generation", model="mistralai/Mistral-Large-Instruct-2407")
215
- chatbot(messages)
216
- ```
217
-
218
- ## Function calling with `transformers`
219
-
220
- To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
221
- [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
222
- in the `transformers` docs for more information.
223
-
224
- ```python
225
- from transformers import AutoModelForCausalLM, AutoTokenizer
226
- import torch
227
-
228
- model_id = "mistralai/Mistral-Large-Instruct-2407"
229
- tokenizer = AutoTokenizer.from_pretrained(model_id)
230
-
231
- def get_current_weather(location: str, format: str):
232
- """
233
- Get the current weather
234
-
235
- Args:
236
- location: The city and state, e.g. San Francisco, CA
237
- format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
238
- """
239
- pass
240
-
241
- conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
242
- tools = [get_current_weather]
243
-
244
- # format and tokenize the tool use prompt
245
- inputs = tokenizer.apply_chat_template(
246
- conversation,
247
- tools=tools,
248
- add_generation_prompt=True,
249
- return_dict=True,
250
- return_tensors="pt",
251
- )
252
-
253
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
254
-
255
- inputs.to(model.device)
256
- outputs = model.generate(**inputs, max_new_tokens=1000)
257
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
258
- ```
259
-
260
- Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
261
- results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
262
- see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
263
- and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
264
- exactly 9 alphanumeric characters.
265
-
266
- ## Limitations
267
-
268
- The Mistral Large model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
269
- It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
270
- make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
271
 
272
- ## The Mistral AI Team
 
273
 
274
- Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Diogo Costa, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
 
17
  extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
18
  ---
19
 
20
+ Quantized model => https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
21
 
22
+ **Quantization Details:**
23
+ Quantization is done using turboderp's ExLlamaV2 v0.2.2.
24
 
25
+ I use the default calibration datasets and arguments. The repo also includes a "measurement.json" file, which was used during the quantization process.
26
 
27
+ For models with bits per weight (BPW) over 6.0, I default to quantizing the `lm_head` layer at 8 bits instead of the standard 6 bits.
 
 
 
 
 
 
28
 
 
29
 
 
30
 
31
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ **Who are you? What's with these weird BPWs on [insert model here]?**
34
+ I specialize in optimized EXL2 quantization for models in the 70B to 100B+ range, specifically tailored for 48GB VRAM setups. My rig is built using 2 x 3090s with a Ryzen APU (APU used solely for desktop output—no VRAM wasted on the 3090s). I use TabbyAPI for inference, targeting context sizes between 32K and 64K.
35
 
36
+ Every model I upload includes a `config.yml` file with my ideal TabbyAPI settings. If you're using my config, don’t forget to set `PYTORCH_CUDA_ALLOC_CONF=backend:cudaMallocAsync` to save some VRAM.