Update README.md
Browse files
README.md
CHANGED
@@ -59,20 +59,20 @@ list_label = ["negative", "positive"]
|
|
59 |
|
60 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
61 |
list_ABC = [x for x in string.ascii_uppercase]
|
62 |
-
|
|
|
63 |
list_label = [x+'.' if x[-1] != '.' else x for x in list_label]
|
64 |
list_label_new = list_label + [tokenizer.pad_token]* (20 - len(list_label))
|
65 |
if shuffle:
|
66 |
random.shuffle(list_label_new)
|
67 |
s_option = ' '.join(['('+list_ABC[i]+') '+list_label_new[i] for i in range(len(list_label_new))])
|
68 |
-
|
69 |
|
70 |
-
def check_text(model, text, list_label, shuffle=False):
|
71 |
-
text, list_label_new = add_prefix(text,list_label, shuffle = shuffle)
|
72 |
model.to(device).eval()
|
73 |
-
encoding = tokenizer([text],truncation=True, max_length=512)
|
74 |
-
item = {key:
|
75 |
logits = model(**item).logits
|
|
|
76 |
logits = logits if shuffle else logits[:,0:len(list_label)]
|
77 |
probs = torch.nn.functional.softmax(logits, dim = -1).tolist()
|
78 |
predictions = torch.argmax(logits, dim=-1).item()
|
|
|
59 |
|
60 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
61 |
list_ABC = [x for x in string.ascii_uppercase]
|
62 |
+
|
63 |
+
def check_text(model, text, list_label, shuffle=False):
|
64 |
list_label = [x+'.' if x[-1] != '.' else x for x in list_label]
|
65 |
list_label_new = list_label + [tokenizer.pad_token]* (20 - len(list_label))
|
66 |
if shuffle:
|
67 |
random.shuffle(list_label_new)
|
68 |
s_option = ' '.join(['('+list_ABC[i]+') '+list_label_new[i] for i in range(len(list_label_new))])
|
69 |
+
text = f'{s_option} {tokenizer.sep_token} {text}'
|
70 |
|
|
|
|
|
71 |
model.to(device).eval()
|
72 |
+
encoding = tokenizer([text],truncation=True, max_length=512,return_tensors='pt')
|
73 |
+
item = {key: val.to(device) for key, val in encoding.items()}
|
74 |
logits = model(**item).logits
|
75 |
+
|
76 |
logits = logits if shuffle else logits[:,0:len(list_label)]
|
77 |
probs = torch.nn.functional.softmax(logits, dim = -1).tolist()
|
78 |
predictions = torch.argmax(logits, dim=-1).item()
|