D0k-tor commited on
Commit
6da93d2
·
1 Parent(s): efaddf2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.11 +/- 0.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e4f8a1a8751a551962923feea2498f8f1e8bb90b9be57d49fadb3e95d52186
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbae9e3a820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fbae9e38c80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679240995763534915,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAb+b+Pj0LM71EUgI/b+b+Pj0LM71EUgI/b+b+Pj0LM71EUgI/b+b+Pj0LM71EUgI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXx4DP1DNrr+i7sw/gc2Gv1UtvT4YaLg/UuyRPjHXmT/Syqw/A9jWPon93D6RRg4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABv5v4+PQszvURSAj8hYFM7eylMu8oWFjtv5v4+PQszvURSAj8hYFM7eylMu8oWFjtv5v4+PQszvURSAj8hYFM7eylMu8oWFjtv5v4+PQszvURSAj8hYFM7eylMu8oWFjuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.49785182 -0.04371189 0.5090678 ]\n [ 0.49785182 -0.04371189 0.5090678 ]\n [ 0.49785182 -0.04371189 0.5090678 ]\n [ 0.49785182 -0.04371189 0.5090678 ]]",
60
+ "desired_goal": "[[ 0.5121822 -1.3656406 1.6010325 ]\n [-1.0531465 0.36948648 1.4406767 ]\n [ 0.2850061 1.2018796 1.3499396 ]\n [ 0.4196168 0.43162182 0.55576426]]",
61
+ "observation": "[[ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]\n [ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]\n [ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]\n [ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATYcJvn95ELwWkyo93gGbPDk9Fr0sM5Q+16ldPYmmC76JyGM+lvGnPSt+OT2hyZc8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.1343052 -0.00881803 0.04164418]\n [ 0.01892179 -0.03667948 0.2894529 ]\n [ 0.05411705 -0.13637747 0.22244467]\n [ 0.08200376 0.04528634 0.01852876]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIshAdAkeC/r+UhpRSlIwBbJRLMowBdJRHQKaCUsGPgel1fZQoaAZoCWgPQwgCYhIu5LEFwJSGlFKUaBVLMmgWR0Cmghc6V+qjdX2UKGgGaAloD0MINX12wHXlCcCUhpRSlGgVSzJoFkdApoHcKgIyCXV9lChoBmgJaA9DCBR3vMlvEfa/lIaUUpRoFUsyaBZHQKaBoZaV2Rt1fZQoaAZoCWgPQwjn5EUm4NcEwJSGlFKUaBVLMmgWR0Cmg7AvtdAxdX2UKGgGaAloD0MI4pANpIstD8CUhpRSlGgVSzJoFkdApoNz8gpz93V9lChoBmgJaA9DCAFMGTigpf2/lIaUUpRoFUsyaBZHQKaDN/WDpTx1fZQoaAZoCWgPQwjbboJvmr73v5SGlFKUaBVLMmgWR0CmgvyT6i0wdX2UKGgGaAloD0MIsg5HV+ku+7+UhpRSlGgVSzJoFkdApoS6ZML4OHV9lChoBmgJaA9DCNKm6h7ZPADAlIaUUpRoFUsyaBZHQKaEfgxagVZ1fZQoaAZoCWgPQwg3HJYGfnQRwJSGlFKUaBVLMmgWR0CmhEIfKZDzdX2UKGgGaAloD0MI0egOYmcqAcCUhpRSlGgVSzJoFkdApoQGwaBI4HV9lChoBmgJaA9DCDbK+s3EFALAlIaUUpRoFUsyaBZHQKaFx5xiobZ1fZQoaAZoCWgPQwhbQGg9fPkDwJSGlFKUaBVLMmgWR0CmhYtayKNydX2UKGgGaAloD0MIeH5Rgv4iDMCUhpRSlGgVSzJoFkdApoVPhl18s3V9lChoBmgJaA9DCK1NY3stGBDAlIaUUpRoFUsyaBZHQKaFFENOM2p1fZQoaAZoCWgPQwjT3uALk0kEwJSGlFKUaBVLMmgWR0Cmhte18b71dX2UKGgGaAloD0MIHLRXHw89BcCUhpRSlGgVSzJoFkdApoabjm0VrXV9lChoBmgJaA9DCNcv2A3b1grAlIaUUpRoFUsyaBZHQKaGX7N0NjN1fZQoaAZoCWgPQwjCo40j1iL7v5SGlFKUaBVLMmgWR0CmhiRsEaESdX2UKGgGaAloD0MIvFtZorOsBsCUhpRSlGgVSzJoFkdApofq4J/oaHV9lChoBmgJaA9DCDI89rNYqgzAlIaUUpRoFUsyaBZHQKaHrvBJqZd1fZQoaAZoCWgPQwh5PgPqzUgEwJSGlFKUaBVLMmgWR0Cmh3Mi0OVgdX2UKGgGaAloD0MIoyB4fHtX/7+UhpRSlGgVSzJoFkdApoc33xnWa3V9lChoBmgJaA9DCGdg5GVNDAHAlIaUUpRoFUsyaBZHQKaI9YYixFB1fZQoaAZoCWgPQwiXjGMke2QHwJSGlFKUaBVLMmgWR0CmiLk6Lfk4dX2UKGgGaAloD0MIIHnnUIZqAMCUhpRSlGgVSzJoFkdApoh9aSs8xXV9lChoBmgJaA9DCNQpj26EpQvAlIaUUpRoFUsyaBZHQKaIQhCdBjZ1fZQoaAZoCWgPQwhKQ41CktkFwJSGlFKUaBVLMmgWR0Cmigjslb/wdX2UKGgGaAloD0MIqrcGtkpgEMCUhpRSlGgVSzJoFkdAponMoUi6hHV9lChoBmgJaA9DCG+5+rFJ/vW/lIaUUpRoFUsyaBZHQKaJkMglnh91fZQoaAZoCWgPQwgyHxDoTJoDwJSGlFKUaBVLMmgWR0CmiVVndweedX2UKGgGaAloD0MIDD7NyYvMBsCUhpRSlGgVSzJoFkdAposO2LHdXXV9lChoBmgJaA9DCBU6r7FL1Pq/lIaUUpRoFUsyaBZHQKaK0m4RVZN1fZQoaAZoCWgPQwiemssNhpoQwJSGlFKUaBVLMmgWR0CmipZuAI6bdX2UKGgGaAloD0MI9RPObi3T/b+UhpRSlGgVSzJoFkdApopbEBKcu3V9lChoBmgJaA9DCA3gLZCgmAzAlIaUUpRoFUsyaBZHQKaMGs0YTCd1fZQoaAZoCWgPQwjRWWYRim35v5SGlFKUaBVLMmgWR0Cmi95sbedkdX2UKGgGaAloD0MIFceBV8udB8CUhpRSlGgVSzJoFkdApouiup0fYHV9lChoBmgJaA9DCKcC7nn+9ArAlIaUUpRoFUsyaBZHQKaLZ0gbIcR1fZQoaAZoCWgPQwiYaftXVroEwJSGlFKUaBVLMmgWR0CmjSOo5xR3dX2UKGgGaAloD0MIFr8prFRQ/r+UhpRSlGgVSzJoFkdApozoPXkHU3V9lChoBmgJaA9DCNeIYBxc+va/lIaUUpRoFUsyaBZHQKaMrU6PsAx1fZQoaAZoCWgPQwj1KjI6ICkBwJSGlFKUaBVLMmgWR0CmjHLFwT/RdX2UKGgGaAloD0MIWU5C6Quh8b+UhpRSlGgVSzJoFkdApo486mwaBXV9lChoBmgJaA9DCNPZyeAoOfK/lIaUUpRoFUsyaBZHQKaOAKwY+B91fZQoaAZoCWgPQwj1Zz9SRAYBwJSGlFKUaBVLMmgWR0CmjcS6cy31dX2UKGgGaAloD0MIl8gFZ/BXAMCUhpRSlGgVSzJoFkdApo2JUrCm/HV9lChoBmgJaA9DCDHuBtFacQDAlIaUUpRoFUsyaBZHQKaPUKbayrx1fZQoaAZoCWgPQwh+G2K85lULwJSGlFKUaBVLMmgWR0CmjxResxO+dX2UKGgGaAloD0MIUbtfBfhOCsCUhpRSlGgVSzJoFkdApo7YgieNDXV9lChoBmgJaA9DCKN5AIv8OgLAlIaUUpRoFUsyaBZHQKaOnRc/t6Z1fZQoaAZoCWgPQwhinwCKkaUHwJSGlFKUaBVLMmgWR0CmkGjFZPl/dX2UKGgGaAloD0MIJeoFn+akAcCUhpRSlGgVSzJoFkdAppAschkiEHV9lChoBmgJaA9DCIC1ateEFADAlIaUUpRoFUsyaBZHQKaP8JVKf4B1fZQoaAZoCWgPQwgO9buwNdv2v5SGlFKUaBVLMmgWR0Cmj7UqhDgJdX2UKGgGaAloD0MIKzI6IAn7BcCUhpRSlGgVSzJoFkdAppGBLZi/f3V9lChoBmgJaA9DCNZXVwVqgRDAlIaUUpRoFUsyaBZHQKaRRN8ma6V1fZQoaAZoCWgPQwif508b1TkQwJSGlFKUaBVLMmgWR0CmkQkGRmsedX2UKGgGaAloD0MIGQCquHEL97+UhpRSlGgVSzJoFkdAppDNrhzeXXV9lChoBmgJaA9DCImYEkn0sgTAlIaUUpRoFUsyaBZHQKaShi704BF1fZQoaAZoCWgPQwgcCMkCJiARwJSGlFKUaBVLMmgWR0CmkknIIWxhdX2UKGgGaAloD0MI1SDM7V6OBMCUhpRSlGgVSzJoFkdAppIN2Pkq+nV9lChoBmgJaA9DCCbirfNvVwvAlIaUUpRoFUsyaBZHQKaR0pNsWO91fZQoaAZoCWgPQwiki00rhSAGwJSGlFKUaBVLMmgWR0Cmk5TCLuQZdX2UKGgGaAloD0MI0ZFc/kM6AMCUhpRSlGgVSzJoFkdAppNYgLZzxXV9lChoBmgJaA9DCJm5wOWxpgPAlIaUUpRoFUsyaBZHQKaTHb4agmJ1fZQoaAZoCWgPQwi3KR4X1WIAwJSGlFKUaBVLMmgWR0CmkuMfA9FGdX2UKGgGaAloD0MIcNHJUuv9AcCUhpRSlGgVSzJoFkdAppScu14PgHV9lChoBmgJaA9DCPgXQWMmUQ3AlIaUUpRoFUsyaBZHQKaUYGbkOqh1fZQoaAZoCWgPQwgkYHR5c/gMwJSGlFKUaBVLMmgWR0CmlCRsMy8BdX2UKGgGaAloD0MIDwu1pnlHEcCUhpRSlGgVSzJoFkdAppPpMvh60XV9lChoBmgJaA9DCP578NqlrQbAlIaUUpRoFUsyaBZHQKaVrA1vVEx1fZQoaAZoCWgPQwjIYTB/hQz6v5SGlFKUaBVLMmgWR0CmlW/1HvtudX2UKGgGaAloD0MIPrMkQE0t9b+UhpRSlGgVSzJoFkdAppU0Qd0aInV9lChoBmgJaA9DCBL5LqUuuQHAlIaUUpRoFUsyaBZHQKaU+MWoFV11fZQoaAZoCWgPQwjE7dCwGBUHwJSGlFKUaBVLMmgWR0Cmlso+OfdzdX2UKGgGaAloD0MI/yPTodODEsCUhpRSlGgVSzJoFkdAppaOC04R3HV9lChoBmgJaA9DCGOYE7TJYQPAlIaUUpRoFUsyaBZHQKaWUkUKzAx1fZQoaAZoCWgPQwgnbD8Z44P/v5SGlFKUaBVLMmgWR0CmlhbxusLfdX2UKGgGaAloD0MIJQSr6uUXA8CUhpRSlGgVSzJoFkdApphYCjk+5nV9lChoBmgJaA9DCEsi+yDLgvO/lIaUUpRoFUsyaBZHQKaYHGdZq211fZQoaAZoCWgPQwiZDTLJyJn+v5SGlFKUaBVLMmgWR0Cml+Ez41xbdX2UKGgGaAloD0MIuMt+3enuBMCUhpRSlGgVSzJoFkdAppembNKRMnV9lChoBmgJaA9DCGJITiZulQrAlIaUUpRoFUsyaBZHQKaaCw5eZ5R1fZQoaAZoCWgPQwh8uU+OAmQGwJSGlFKUaBVLMmgWR0CmmdChnJ1adX2UKGgGaAloD0MIJZaUu8/RAcCUhpRSlGgVSzJoFkdAppmVJQLuyHV9lChoBmgJaA9DCGzsEtVbg/i/lIaUUpRoFUsyaBZHQKaZWmfoRqZ1fZQoaAZoCWgPQwjacFga+FEFwJSGlFKUaBVLMmgWR0Cmm7qohpxndX2UKGgGaAloD0MIeh1xyAZS+L+UhpRSlGgVSzJoFkdAppt/GACnxnV9lChoBmgJaA9DCOmAJOzbKQnAlIaUUpRoFUsyaBZHQKabRBX0Xgt1fZQoaAZoCWgPQwi2os1xbjMCwJSGlFKUaBVLMmgWR0CmmwlkH2RJdX2UKGgGaAloD0MIMpHSbB5nD8CUhpRSlGgVSzJoFkdApp1VjZtelnV9lChoBmgJaA9DCBAk7xzKABDAlIaUUpRoFUsyaBZHQKadGcLBsRB1fZQoaAZoCWgPQwhoBvGBHV8FwJSGlFKUaBVLMmgWR0CmnN5AhStOdX2UKGgGaAloD0MI9l580R7PCcCUhpRSlGgVSzJoFkdAppyjvCuU2XV9lChoBmgJaA9DCH3KMVncnw3AlIaUUpRoFUsyaBZHQKae3sGgSOB1fZQoaAZoCWgPQwggY+5aQh4CwJSGlFKUaBVLMmgWR0CmnqM+3YthdX2UKGgGaAloD0MIlNv2PeovDcCUhpRSlGgVSzJoFkdApp5nw7T2FnV9lChoBmgJaA9DCICZ7+AnLgTAlIaUUpRoFUsyaBZHQKaeLP+n62x1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acba3c02b7f331a2fa108fab8e62cd02a2ac0dcd3027ef1aeec92793dfc635fb
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9d6ba2ae971ecca3483b73782a8a3141951688bd9d0ba565db5acfe9857a845
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbae9e3a820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbae9e38c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679240995763534915, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAb+b+Pj0LM71EUgI/b+b+Pj0LM71EUgI/b+b+Pj0LM71EUgI/b+b+Pj0LM71EUgI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXx4DP1DNrr+i7sw/gc2Gv1UtvT4YaLg/UuyRPjHXmT/Syqw/A9jWPon93D6RRg4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABv5v4+PQszvURSAj8hYFM7eylMu8oWFjtv5v4+PQszvURSAj8hYFM7eylMu8oWFjtv5v4+PQszvURSAj8hYFM7eylMu8oWFjtv5v4+PQszvURSAj8hYFM7eylMu8oWFjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.49785182 -0.04371189 0.5090678 ]\n [ 0.49785182 -0.04371189 0.5090678 ]\n [ 0.49785182 -0.04371189 0.5090678 ]\n [ 0.49785182 -0.04371189 0.5090678 ]]", "desired_goal": "[[ 0.5121822 -1.3656406 1.6010325 ]\n [-1.0531465 0.36948648 1.4406767 ]\n [ 0.2850061 1.2018796 1.3499396 ]\n [ 0.4196168 0.43162182 0.55576426]]", "observation": "[[ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]\n [ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]\n [ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]\n [ 0.49785182 -0.04371189 0.5090678 0.00322533 -0.00311527 0.00229018]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATYcJvn95ELwWkyo93gGbPDk9Fr0sM5Q+16ldPYmmC76JyGM+lvGnPSt+OT2hyZc8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1343052 -0.00881803 0.04164418]\n [ 0.01892179 -0.03667948 0.2894529 ]\n [ 0.05411705 -0.13637747 0.22244467]\n [ 0.08200376 0.04528634 0.01852876]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIshAdAkeC/r+UhpRSlIwBbJRLMowBdJRHQKaCUsGPgel1fZQoaAZoCWgPQwgCYhIu5LEFwJSGlFKUaBVLMmgWR0Cmghc6V+qjdX2UKGgGaAloD0MINX12wHXlCcCUhpRSlGgVSzJoFkdApoHcKgIyCXV9lChoBmgJaA9DCBR3vMlvEfa/lIaUUpRoFUsyaBZHQKaBoZaV2Rt1fZQoaAZoCWgPQwjn5EUm4NcEwJSGlFKUaBVLMmgWR0Cmg7AvtdAxdX2UKGgGaAloD0MI4pANpIstD8CUhpRSlGgVSzJoFkdApoNz8gpz93V9lChoBmgJaA9DCAFMGTigpf2/lIaUUpRoFUsyaBZHQKaDN/WDpTx1fZQoaAZoCWgPQwjbboJvmr73v5SGlFKUaBVLMmgWR0CmgvyT6i0wdX2UKGgGaAloD0MIsg5HV+ku+7+UhpRSlGgVSzJoFkdApoS6ZML4OHV9lChoBmgJaA9DCNKm6h7ZPADAlIaUUpRoFUsyaBZHQKaEfgxagVZ1fZQoaAZoCWgPQwg3HJYGfnQRwJSGlFKUaBVLMmgWR0CmhEIfKZDzdX2UKGgGaAloD0MI0egOYmcqAcCUhpRSlGgVSzJoFkdApoQGwaBI4HV9lChoBmgJaA9DCDbK+s3EFALAlIaUUpRoFUsyaBZHQKaFx5xiobZ1fZQoaAZoCWgPQwhbQGg9fPkDwJSGlFKUaBVLMmgWR0CmhYtayKNydX2UKGgGaAloD0MIeH5Rgv4iDMCUhpRSlGgVSzJoFkdApoVPhl18s3V9lChoBmgJaA9DCK1NY3stGBDAlIaUUpRoFUsyaBZHQKaFFENOM2p1fZQoaAZoCWgPQwjT3uALk0kEwJSGlFKUaBVLMmgWR0Cmhte18b71dX2UKGgGaAloD0MIHLRXHw89BcCUhpRSlGgVSzJoFkdApoabjm0VrXV9lChoBmgJaA9DCNcv2A3b1grAlIaUUpRoFUsyaBZHQKaGX7N0NjN1fZQoaAZoCWgPQwjCo40j1iL7v5SGlFKUaBVLMmgWR0CmhiRsEaESdX2UKGgGaAloD0MIvFtZorOsBsCUhpRSlGgVSzJoFkdApofq4J/oaHV9lChoBmgJaA9DCDI89rNYqgzAlIaUUpRoFUsyaBZHQKaHrvBJqZd1fZQoaAZoCWgPQwh5PgPqzUgEwJSGlFKUaBVLMmgWR0Cmh3Mi0OVgdX2UKGgGaAloD0MIoyB4fHtX/7+UhpRSlGgVSzJoFkdApoc33xnWa3V9lChoBmgJaA9DCGdg5GVNDAHAlIaUUpRoFUsyaBZHQKaI9YYixFB1fZQoaAZoCWgPQwiXjGMke2QHwJSGlFKUaBVLMmgWR0CmiLk6Lfk4dX2UKGgGaAloD0MIIHnnUIZqAMCUhpRSlGgVSzJoFkdApoh9aSs8xXV9lChoBmgJaA9DCNQpj26EpQvAlIaUUpRoFUsyaBZHQKaIQhCdBjZ1fZQoaAZoCWgPQwhKQ41CktkFwJSGlFKUaBVLMmgWR0Cmigjslb/wdX2UKGgGaAloD0MIqrcGtkpgEMCUhpRSlGgVSzJoFkdAponMoUi6hHV9lChoBmgJaA9DCG+5+rFJ/vW/lIaUUpRoFUsyaBZHQKaJkMglnh91fZQoaAZoCWgPQwgyHxDoTJoDwJSGlFKUaBVLMmgWR0CmiVVndweedX2UKGgGaAloD0MIDD7NyYvMBsCUhpRSlGgVSzJoFkdAposO2LHdXXV9lChoBmgJaA9DCBU6r7FL1Pq/lIaUUpRoFUsyaBZHQKaK0m4RVZN1fZQoaAZoCWgPQwiemssNhpoQwJSGlFKUaBVLMmgWR0CmipZuAI6bdX2UKGgGaAloD0MI9RPObi3T/b+UhpRSlGgVSzJoFkdApopbEBKcu3V9lChoBmgJaA9DCA3gLZCgmAzAlIaUUpRoFUsyaBZHQKaMGs0YTCd1fZQoaAZoCWgPQwjRWWYRim35v5SGlFKUaBVLMmgWR0Cmi95sbedkdX2UKGgGaAloD0MIFceBV8udB8CUhpRSlGgVSzJoFkdApouiup0fYHV9lChoBmgJaA9DCKcC7nn+9ArAlIaUUpRoFUsyaBZHQKaLZ0gbIcR1fZQoaAZoCWgPQwiYaftXVroEwJSGlFKUaBVLMmgWR0CmjSOo5xR3dX2UKGgGaAloD0MIFr8prFRQ/r+UhpRSlGgVSzJoFkdApozoPXkHU3V9lChoBmgJaA9DCNeIYBxc+va/lIaUUpRoFUsyaBZHQKaMrU6PsAx1fZQoaAZoCWgPQwj1KjI6ICkBwJSGlFKUaBVLMmgWR0CmjHLFwT/RdX2UKGgGaAloD0MIWU5C6Quh8b+UhpRSlGgVSzJoFkdApo486mwaBXV9lChoBmgJaA9DCNPZyeAoOfK/lIaUUpRoFUsyaBZHQKaOAKwY+B91fZQoaAZoCWgPQwj1Zz9SRAYBwJSGlFKUaBVLMmgWR0CmjcS6cy31dX2UKGgGaAloD0MIl8gFZ/BXAMCUhpRSlGgVSzJoFkdApo2JUrCm/HV9lChoBmgJaA9DCDHuBtFacQDAlIaUUpRoFUsyaBZHQKaPUKbayrx1fZQoaAZoCWgPQwh+G2K85lULwJSGlFKUaBVLMmgWR0CmjxResxO+dX2UKGgGaAloD0MIUbtfBfhOCsCUhpRSlGgVSzJoFkdApo7YgieNDXV9lChoBmgJaA9DCKN5AIv8OgLAlIaUUpRoFUsyaBZHQKaOnRc/t6Z1fZQoaAZoCWgPQwhinwCKkaUHwJSGlFKUaBVLMmgWR0CmkGjFZPl/dX2UKGgGaAloD0MIJeoFn+akAcCUhpRSlGgVSzJoFkdAppAschkiEHV9lChoBmgJaA9DCIC1ateEFADAlIaUUpRoFUsyaBZHQKaP8JVKf4B1fZQoaAZoCWgPQwgO9buwNdv2v5SGlFKUaBVLMmgWR0Cmj7UqhDgJdX2UKGgGaAloD0MIKzI6IAn7BcCUhpRSlGgVSzJoFkdAppGBLZi/f3V9lChoBmgJaA9DCNZXVwVqgRDAlIaUUpRoFUsyaBZHQKaRRN8ma6V1fZQoaAZoCWgPQwif508b1TkQwJSGlFKUaBVLMmgWR0CmkQkGRmsedX2UKGgGaAloD0MIGQCquHEL97+UhpRSlGgVSzJoFkdAppDNrhzeXXV9lChoBmgJaA9DCImYEkn0sgTAlIaUUpRoFUsyaBZHQKaShi704BF1fZQoaAZoCWgPQwgcCMkCJiARwJSGlFKUaBVLMmgWR0CmkknIIWxhdX2UKGgGaAloD0MI1SDM7V6OBMCUhpRSlGgVSzJoFkdAppIN2Pkq+nV9lChoBmgJaA9DCCbirfNvVwvAlIaUUpRoFUsyaBZHQKaR0pNsWO91fZQoaAZoCWgPQwiki00rhSAGwJSGlFKUaBVLMmgWR0Cmk5TCLuQZdX2UKGgGaAloD0MI0ZFc/kM6AMCUhpRSlGgVSzJoFkdAppNYgLZzxXV9lChoBmgJaA9DCJm5wOWxpgPAlIaUUpRoFUsyaBZHQKaTHb4agmJ1fZQoaAZoCWgPQwi3KR4X1WIAwJSGlFKUaBVLMmgWR0CmkuMfA9FGdX2UKGgGaAloD0MIcNHJUuv9AcCUhpRSlGgVSzJoFkdAppScu14PgHV9lChoBmgJaA9DCPgXQWMmUQ3AlIaUUpRoFUsyaBZHQKaUYGbkOqh1fZQoaAZoCWgPQwgkYHR5c/gMwJSGlFKUaBVLMmgWR0CmlCRsMy8BdX2UKGgGaAloD0MIDwu1pnlHEcCUhpRSlGgVSzJoFkdAppPpMvh60XV9lChoBmgJaA9DCP578NqlrQbAlIaUUpRoFUsyaBZHQKaVrA1vVEx1fZQoaAZoCWgPQwjIYTB/hQz6v5SGlFKUaBVLMmgWR0CmlW/1HvtudX2UKGgGaAloD0MIPrMkQE0t9b+UhpRSlGgVSzJoFkdAppU0Qd0aInV9lChoBmgJaA9DCBL5LqUuuQHAlIaUUpRoFUsyaBZHQKaU+MWoFV11fZQoaAZoCWgPQwjE7dCwGBUHwJSGlFKUaBVLMmgWR0Cmlso+OfdzdX2UKGgGaAloD0MI/yPTodODEsCUhpRSlGgVSzJoFkdAppaOC04R3HV9lChoBmgJaA9DCGOYE7TJYQPAlIaUUpRoFUsyaBZHQKaWUkUKzAx1fZQoaAZoCWgPQwgnbD8Z44P/v5SGlFKUaBVLMmgWR0CmlhbxusLfdX2UKGgGaAloD0MIJQSr6uUXA8CUhpRSlGgVSzJoFkdApphYCjk+5nV9lChoBmgJaA9DCEsi+yDLgvO/lIaUUpRoFUsyaBZHQKaYHGdZq211fZQoaAZoCWgPQwiZDTLJyJn+v5SGlFKUaBVLMmgWR0Cml+Ez41xbdX2UKGgGaAloD0MIuMt+3enuBMCUhpRSlGgVSzJoFkdAppembNKRMnV9lChoBmgJaA9DCGJITiZulQrAlIaUUpRoFUsyaBZHQKaaCw5eZ5R1fZQoaAZoCWgPQwh8uU+OAmQGwJSGlFKUaBVLMmgWR0CmmdChnJ1adX2UKGgGaAloD0MIJZaUu8/RAcCUhpRSlGgVSzJoFkdAppmVJQLuyHV9lChoBmgJaA9DCGzsEtVbg/i/lIaUUpRoFUsyaBZHQKaZWmfoRqZ1fZQoaAZoCWgPQwjacFga+FEFwJSGlFKUaBVLMmgWR0Cmm7qohpxndX2UKGgGaAloD0MIeh1xyAZS+L+UhpRSlGgVSzJoFkdAppt/GACnxnV9lChoBmgJaA9DCOmAJOzbKQnAlIaUUpRoFUsyaBZHQKabRBX0Xgt1fZQoaAZoCWgPQwi2os1xbjMCwJSGlFKUaBVLMmgWR0CmmwlkH2RJdX2UKGgGaAloD0MIMpHSbB5nD8CUhpRSlGgVSzJoFkdApp1VjZtelnV9lChoBmgJaA9DCBAk7xzKABDAlIaUUpRoFUsyaBZHQKadGcLBsRB1fZQoaAZoCWgPQwhoBvGBHV8FwJSGlFKUaBVLMmgWR0CmnN5AhStOdX2UKGgGaAloD0MI9l580R7PCcCUhpRSlGgVSzJoFkdAppyjvCuU2XV9lChoBmgJaA9DCH3KMVncnw3AlIaUUpRoFUsyaBZHQKae3sGgSOB1fZQoaAZoCWgPQwggY+5aQh4CwJSGlFKUaBVLMmgWR0CmnqM+3YthdX2UKGgGaAloD0MIlNv2PeovDcCUhpRSlGgVSzJoFkdApp5nw7T2FnV9lChoBmgJaA9DCICZ7+AnLgTAlIaUUpRoFUsyaBZHQKaeLP+n62x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (762 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.112076844251715, "std_reward": 0.4244723119096553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T16:38:50.741529"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049bb7de41d3426d09d4addc372da7a4724f28ea7f14b54bbd9d1fbcddf4a560
3
+ size 3056