File size: 1,831 Bytes
a66a2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea29bd6
a66a2af
ea29bd6
 
 
 
 
 
 
 
 
 
a66a2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea29bd6
 
 
 
a66a2af
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-cnn_dailymail
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-cnn_dailymail

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0513
- Rouge1: 24.267
- Rouge2: 11.7305
- Rougel: 20.2444
- Rougelsum: 22.6768
- Bleu 1: 4.2724
- Bleu 2: 2.7858
- Bleu 3: 2.0352
- Meteor: 12.0395
- Compression rate: 4.0329

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2  | Rougel  | Rougelsum | Bleu 1 | Bleu 2 | Bleu 3 | Meteor  | Compression rate |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:------:|:------:|:------:|:-------:|:----------------:|
| 1.1979        | 1.0   | 625  | 1.0653          | 23.882 | 11.5236 | 19.9616 | 22.36     | 4.1676 | 2.7136 | 1.9845 | 11.8215 | 4.0625           |
| 1.0449        | 2.0   | 1250 | 1.0513          | 24.267 | 11.7305 | 20.2444 | 22.6768   | 4.2724 | 2.7858 | 2.0352 | 12.0395 | 4.0329           |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1