File size: 4,901 Bytes
8cea444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#define MIN_VALUE (-1e38)
typedef at::BFloat16 bf16;

__global__ void kernel_forward(const int B, const int T, const int C,
                               const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
                               bf16 *__restrict__ const _y) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int _b = idx / C;
    const int _c = idx % C;
    const int _offset = _b * T * C + _c;

    float u = float(_u[_c]);
    float w = _w[_c];
    const bf16 *__restrict__ const k = _k + _offset;
    const bf16 *__restrict__ const v = _v + _offset;
    bf16 *__restrict__ const y = _y + _offset;

    // aa and bb are running sums divided by exp(pp) (to avoid overflow)
    float aa = 0, bb = 0, pp = MIN_VALUE;
    for (int i = 0; i < T; i++) {
        const int ii = i * C;
        const float kk = float(k[ii]);
        const float vv = float(v[ii]);

        float ww = u + kk;
        float p = max(pp, ww);
        float e1 = exp(pp - p);
        float e2 = exp(ww - p);
        y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
        
        ww = w + pp;
        p = max(ww, kk);
        e1 = exp(ww - p);
        e2 = exp(kk - p);
        aa = e1 * aa + e2 * vv;
        bb = e1 * bb + e2;
        pp = p;
    }
}

__global__ void kernel_backward(const int B, const int T, const int C,
                                const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
                                const bf16 *__restrict__ const _y, const bf16 *__restrict__ const _gy,
                                bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int _b = idx / C;
    const int _c = idx % C;
    const int _offset = _b * T * C + _c;

    float u = float(_u[_c]);
    float w = _w[_c];
    const bf16 *__restrict__ const k = _k + _offset;
    const bf16 *__restrict__ const v = _v + _offset;
    const bf16 *__restrict__ const y = _y + _offset;
    const bf16 *__restrict__ const gy = _gy + _offset;
    bf16 *__restrict__ const gk = _gk + _offset;
    bf16 *__restrict__ const gv = _gv + _offset;

    float q[Tmax], r[Tmax];

    float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
    for (int i = 0; i < T; i++) {
        const int ii = i * C;
        const float kk = float(k[ii]);
        const float vv = float(v[ii]);
        const float yy = float(y[ii]);

        float ww = u + kk;
        float p = max(pp, ww);
        float e1 = exp(pp - p);
        float e2 = exp(ww - p);
        const float qq = float(gy[ii]) / (e1 * bb + e2);
        gw += (ga - gb * yy) * e1 * qq;
        gu += (vv - yy) * e2 * qq;
        q[i] = qq;
        r[i] = ww - p;

        ww = w + pp;
        p = max(ww, kk);
        e1 = exp(ww - p);
        e2 = exp(kk - p);
        ga = e1 * (aa + ga);
        gb = e1 * (bb + gb);
        aa = e1 * aa + e2 * vv;
        bb = e1 * bb + e2;
        pp = p;
    }
    const int _offsetBC = _b * C + _c;
    _gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
    _gu[_offsetBC] = bf16(gu);

    aa = 0, bb = 0, pp = MIN_VALUE;
    for (int i = T - 1; i >= 0; i--) {
        const int ii = i * C;
        const float kk = float(k[ii]);
        const float vv = float(v[ii]);
        const float yy = float(y[ii]);
        const float qq = q[i];
        const float rr = r[i];

        float e1 = qq * exp(rr);
        float e2 = exp(kk + pp);
        gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
        gv[ii] = bf16(e1 + e2 * aa);

        const float ww = w + pp;
        const float www = rr - u - kk;
        const float p = max(ww, www);
        e1 = exp(ww - p);
        e2 = qq * exp(www - p);
        aa = e1 * aa + e2;
        bb = e1 * bb - e2 * yy;
        pp = p;
    }
}

void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
    dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
    assert(B * C % threadsPerBlock.x == 0);
    dim3 numBlocks(B * C / threadsPerBlock.x);
    kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}

void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
    dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
    assert(B * C % threadsPerBlock.x == 0);
    dim3 numBlocks(B * C / threadsPerBlock.x);
    kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}