Crystalcareai
commited on
Update modeling_gemmoe.py
Browse files- modeling_gemmoe.py +39 -19
modeling_gemmoe.py
CHANGED
@@ -25,8 +25,6 @@ import torch.utils.checkpoint
|
|
25 |
from torch import nn
|
26 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
|
28 |
-
from .mlp import MLP
|
29 |
-
|
30 |
from transformers.activations import ACT2FN
|
31 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
32 |
from transformers.modeling_attn_mask_utils import (
|
@@ -631,39 +629,61 @@ GEMMOE_ATTENTION_CLASSES = {
|
|
631 |
"sdpa": GemmoeSdpaAttention,
|
632 |
}
|
633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
class GemmoeSparseMoeBlock(nn.Module):
|
635 |
def __init__(self, config):
|
636 |
super().__init__()
|
637 |
self.hidden_dim = config.hidden_size
|
638 |
self.ffn_dim = config.intermediate_size
|
639 |
self.num_experts = config.num_local_experts
|
640 |
-
self.top_k =
|
641 |
|
642 |
# gating
|
643 |
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
644 |
|
645 |
-
self.
|
646 |
-
input_size=self.hidden_dim,
|
647 |
-
hidden_size=self.ffn_dim,
|
648 |
-
activation=nn.GELU(),
|
649 |
-
num_experts=self.num_experts,
|
650 |
-
top_k=self.top_k
|
651 |
-
)
|
652 |
|
653 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
654 |
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
655 |
hidden_states = hidden_states.view(-1, hidden_dim)
|
656 |
-
|
|
|
657 |
router_logits = self.gate(hidden_states)
|
658 |
-
routing_weights = F.softmax(router_logits, dim=1
|
659 |
-
|
660 |
-
|
661 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
|
663 |
-
|
664 |
-
hidden_states = hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
665 |
|
666 |
-
|
|
|
667 |
|
668 |
|
669 |
# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with LLAMA->GEMMOE,Llama->Gemmoe
|
|
|
25 |
from torch import nn
|
26 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
|
|
|
|
|
28 |
from transformers.activations import ACT2FN
|
29 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
30 |
from transformers.modeling_attn_mask_utils import (
|
|
|
629 |
"sdpa": GemmoeSdpaAttention,
|
630 |
}
|
631 |
|
632 |
+
class GemmoeBlockSparseTop2MLP(nn.Module):
|
633 |
+
def __init__(self, config: GemmoeConfig):
|
634 |
+
super().__init__()
|
635 |
+
self.ffn_dim = config.intermediate_size
|
636 |
+
self.hidden_dim = config.hidden_size
|
637 |
+
|
638 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
639 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
640 |
+
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
641 |
+
|
642 |
+
self.act_fn = approx_gelu
|
643 |
+
|
644 |
+
def forward(self, hidden_states):
|
645 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
646 |
+
current_hidden_states = self.w2(current_hidden_states)
|
647 |
+
return current_hidden_states.to(hidden_states.dtype)
|
648 |
+
|
649 |
+
|
650 |
class GemmoeSparseMoeBlock(nn.Module):
|
651 |
def __init__(self, config):
|
652 |
super().__init__()
|
653 |
self.hidden_dim = config.hidden_size
|
654 |
self.ffn_dim = config.intermediate_size
|
655 |
self.num_experts = config.num_local_experts
|
656 |
+
self.top_k = 2
|
657 |
|
658 |
# gating
|
659 |
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
660 |
|
661 |
+
self.experts = nn.ModuleList([GemmoeBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
|
663 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
664 |
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
665 |
hidden_states = hidden_states.view(-1, hidden_dim)
|
666 |
+
|
667 |
+
# router_logits: (batch * sequence_length, n_experts)
|
668 |
router_logits = self.gate(hidden_states)
|
669 |
+
routing_weights = F.softmax(router_logits, dim=1)
|
670 |
+
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
|
671 |
+
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
|
672 |
+
|
673 |
+
hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0)
|
674 |
+
|
675 |
+
y = torch.empty_like(hidden_states)
|
676 |
+
|
677 |
+
flat_topk_idx = topk_idx.view(-1)
|
678 |
+
for i in range(self.num_experts):
|
679 |
+
expert = self.experts[i]
|
680 |
+
expert_output = expert(hidden_states[flat_topk_idx == i])
|
681 |
+
y[flat_topk_idx == i] = expert_output
|
682 |
|
683 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
|
|
684 |
|
685 |
+
final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim)
|
686 |
+
return final_hidden_states.to(hidden_states.dtype), router_logits.to(hidden_states.dtype)
|
687 |
|
688 |
|
689 |
# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with LLAMA->GEMMOE,Llama->Gemmoe
|