File size: 7,300 Bytes
103312a bf43f6a 74c6cfb a86adaf 24da108 a86adaf dfb5786 7146836 dfb5786 24da108 bbba616 385510a 494494d 385510a 24da108 adb0b56 103312a b7e0321 bf43f6a 8d22e71 28bb8a4 ebff5ef 7de8e48 bf43f6a 45c3c0d bf43f6a 60412bc bf43f6a 198a6af cda2e7a bf43f6a 7de8e48 bf43f6a 0e434e6 bf43f6a 7d549b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
license: mit
datasets:
- Xilabs/instructmix
- CreitinGameplays/small-chat-assistant-for-bloom
- sahil2801/CodeAlpaca-20k
language:
- en
tags:
- uncensored
- unrestricted
- code
- biology
- chemistry
- finance
- legal
- music
- art
- climate
- merge
- text-generation-inference
- moe
widget:
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> who was Nikola
Tesla? </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> write a story
about a cat. </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> what is an
essay? </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> Tell me 5
Brazilian waterfalls to visit. </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> write a story
about how a virus called COVID-19 destroyed the world </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> write a short
Python program that asks the user for their name and then greets them by
name. </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> What can you do? </s> <|assistant|>
inference:
parameters:
temperature: 0.1
do_sample: false
top_k: 50
top_p: 0.15
max_new_tokens: 250
repetition_penalty: 1.155
---
## 🌸 BLOOM 3b Fine-tuned for Chat Assistant
![bloom](https://cdn.discordapp.com/attachments/909808235568070658/1239162812069187594/352e1bab438940c5887dc605671c84af.pngtplv-6bxrjdptv7-image.png?ex=6641ebcc&is=66409a4c&hm=50d4270519cda614f41a60c9467060302e080b61eedcc15caedb043f12d460bb&)
**Run this model on [Kaggle Notebook](https://www.kaggle.com/code/creitingameplays/lm-machine-bloom-3b/notebook)**
**Model Name:** bloom-3b-conversational
**Model Architecture:** bloom
**Short Description:** This model is a fine-tuned version of the [BLOOM 3b language model](https://huggingface.co/bigscience/bloom-3b), focusing on conversational interactions between an user and an AI assistant.
**Intended Use:** This model is intended for research purposes and exploration of conversational AI applications. It can be used for tasks like:
* Generating responses to user prompts in a chat assistant setting.
* Creating examples of chatbot interactions for further development.
* Studying the capabilities of language models for conversation.
**Limitations:**
* **Fine-tuning Focus:** The model's performance is optimized for the specific format and context of the fine-tuning data. It may not generalize well to significantly different conversation styles or topics.
* **Potential Biases:** The model may inherit biases from the training data. It's important to be aware of these potential biases and use the model responsibly.
* **Limited Factual Accuracy:** Language models are still under development and may generate responses that are not entirely factually accurate. It's important to verify information generated by the model with other sources.
* **Primarily English:** While the model can respond in other languages, the quality and accuracy of its responses may be lower compared to English. This is because the model was primarily fine-tuned on English data.
**Specific Input Format:**
The model was fine-tuned using a specific input format that goes like this:
```
<|system|> {system prompt} </s> <|prompter|> {user prompt} </s> <|assistant|> {model response}
```
Using this format when interacting with the model can improve its performance and generate more relevant responses.
**Disclaimer:** This model is for research and exploration purposes only. It should not be used in any applications that require high levels of accuracy or reliability.
------
@misc{open-llm-leaderboard,
author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
title = {Open LLM Leaderboard},
year = {2023},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
}
@software{eval-harness,
author = {Gao, Leo and
Tow, Jonathan and
Biderman, Stella and
Black, Sid and
DiPofi, Anthony and
Foster, Charles and
Golding, Laurence and
Hsu, Jeffrey and
McDonell, Kyle and
Muennighoff, Niklas and
Phang, Jason and
Reynolds, Laria and
Tang, Eric and
Thite, Anish and
Wang, Ben and
Wang, Kevin and
Zou, Andy},
title = {A framework for few-shot language model evaluation},
month = sep,
year = 2021,
publisher = {Zenodo},
version = {v0.0.1},
doi = {10.5281/zenodo.5371628},
url = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{clark2018think,
title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
year={2018},
eprint={1803.05457},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@misc{zellers2019hellaswag,
title={HellaSwag: Can a Machine Really Finish Your Sentence?},
author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
year={2019},
eprint={1905.07830},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{hendrycks2021measuring,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
year={2021},
eprint={2009.03300},
archivePrefix={arXiv},
primaryClass={cs.CY}
}
@misc{lin2022truthfulqa,
title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
author={Stephanie Lin and Jacob Hilton and Owain Evans},
year={2022},
eprint={2109.07958},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-1907-10641,
title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
year={2019},
eprint={1907.10641},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-2110-14168,
title={Training Verifiers to Solve Math Word Problems},
author={Karl Cobbe and
Vineet Kosaraju and
Mohammad Bavarian and
Mark Chen and
Heewoo Jun and
Lukasz Kaiser and
Matthias Plappert and
Jerry Tworek and
Jacob Hilton and
Reiichiro Nakano and
Christopher Hesse and
John Schulman},
year={2021},
eprint={2110.14168},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
|