File size: 29,280 Bytes
867f9b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:35934
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Stating purpose of the current research with reference to gaps
or issues in the literature
sentences:
- During the 15-year study, 10% of the osseointegrated implants in the edentulous
jaw showed signs of peri-implantitis, leading to their failure.
- This paper provides an in-depth exploration of the qualitative case study methodology,
addressing the lack of comprehensive guidance for novice researchers in this area.
- As a novice researcher in management science, I have been drawn to the qualitative
case study methodology due to its ability to provide rich, in-depth insights into
complex real-world situations.
- source_sentence: Indicating missing, weak, or contradictory evidence
sentences:
- This paper contributes to the literature on the financial system by examining
the relationship between bank size, bank capital, and the bank lending channel
using a unique dataset of US banks during the global financial crisis.
- A total of 150 patients with a clinical diagnosis of osteoarthritis of the hip
or knee, according to the American College of Rheumatology criteria, were included
in the study.
- Despite the widespread use of the WOMAC (Western Ontario and McMaster Universities
Osteoarthritis Index) questionnaire in clinical practice and research, there is
a lack of consensus regarding its responsiveness to antirheumatic drug therapy
in patients with osteoarthritis of the hip or knee.
- source_sentence: 'Establishing the importance of the topic for the world or society:
time frame given'
sentences:
- The Th/Hf ratios of the basaltic lavas from the British Tertiary Volcanic Province
range from 4.2 to 5.5, as shown in Table 1.
- The use of organometal halide perovskites as visible-light sensitizers for photovoltaic
cells has gained significant attention in the optoelectronics community due to
their promising photovoltaic performance and cost-effective fabrication since
the late 2000s.
- Table 1 summarizes the power conversion efficiencies (PCEs) and certifications
of the best-performing perovskite solar cells reported in the literature.
- source_sentence: Describing the research design and the methods used
sentences:
- This study aims to evaluate the efficacy and safety of preoperative radiotherapy
followed by total mesorectal excision in the treatment of resectable rectal cancer.
- TREE-PUZZLE's parallel computing implementation significantly reduces the time
required for maximum likelihood phylogenetic analysis compared to traditional
methods, supporting previous findings of the importance of parallelization in
phylogenetics.
- This study investigates the efficacy of preoperative radiotherapy followed by
total mesorectal excision in the treatment of resectable rectal cancer.
- source_sentence: 'Surveys and interviews: Introducing excerpts from interview data'
sentences:
- Previous research on international trade under the WTO regime has explored various
approaches to understanding the uneven promotion of trade (Hoekstra & Kostecki,
2001; Cline, 2004, ...).
- Through surveys and interviews, multiliterate teachers expressed a shared belief
in the importance of fostering students' ability to navigate multiple discourse
communities.
- The authors employ a constructivist approach to learning, where students build
knowledge through active engagement with multimedia texts and collaborative discussions.
datasets:
- Corran/SciGenTriplets
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: SciGen Eval Set
type: SciGen-Eval-Set
metrics:
- type: cosine_accuracy@1
value: 0.8918076580587712
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9307658058771149
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9481300089047195
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9668299198575245
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8918076580587712
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3102552686257049
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18962600178094388
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09668299198575243
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8918076580587712
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9307658058771149
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9481300089047195
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9668299198575245
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9279217256301748
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9156546382281018
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9171082586239344
name: Cosine Map@100
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(30522, 768, mode='mean')
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciGenNomicEmbedStatic")
# Run inference
sentences = [
'Surveys and interviews: Introducing excerpts from interview data',
"Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `SciGen-Eval-Set`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8918 |
| cosine_accuracy@3 | 0.9308 |
| cosine_accuracy@5 | 0.9481 |
| cosine_accuracy@10 | 0.9668 |
| cosine_precision@1 | 0.8918 |
| cosine_precision@3 | 0.3103 |
| cosine_precision@5 | 0.1896 |
| cosine_precision@10 | 0.0967 |
| cosine_recall@1 | 0.8918 |
| cosine_recall@3 | 0.9308 |
| cosine_recall@5 | 0.9481 |
| cosine_recall@10 | 0.9668 |
| **cosine_ndcg@10** | **0.9279** |
| cosine_mrr@10 | 0.9157 |
| cosine_map@100 | 0.9171 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### sci_gen_colbert_triplets
* Dataset: [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) at [44071bd](https://huggingface.co/datasets/Corran/SciGenColbertTriplets/tree/44071bdd857e9598233bd44a26a9433b46f25458)
* Size: 35,934 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 20 characters</li><li>mean: 50.28 characters</li><li>max: 120 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 206.53 characters</li><li>max: 401 characters</li></ul> | <ul><li>min: 96 characters</li><li>mean: 209.67 characters</li><li>max: 418 characters</li></ul> |
* Samples:
| query | positive | negative |
|:-----------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Previous research: highlighting negative outcomes</code> | <code>Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers.</code> | <code>This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.</code> |
| <code>Synthesising sources: contrasting evidence or ideas</code> | <code>Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001).</code> | <code>Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.</code> |
| <code>Previous research: Approaches taken</code> | <code>Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988).</code> | <code>The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### sci_gen_colbert_triplets
* Dataset: [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) at [44071bd](https://huggingface.co/datasets/Corran/SciGenColbertTriplets/tree/44071bdd857e9598233bd44a26a9433b46f25458)
* Size: 4,492 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 20 characters</li><li>mean: 50.59 characters</li><li>max: 120 characters</li></ul> | <ul><li>min: 98 characters</li><li>mean: 203.98 characters</li><li>max: 448 characters</li></ul> | <ul><li>min: 36 characters</li><li>mean: 204.82 characters</li><li>max: 422 characters</li></ul> |
* Samples:
| query | positive | negative |
|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Providing background information: reference to the purpose of the study</code> | <code>This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains.</code> | <code>Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.</code> |
| <code>Providing background information: reference to the literature</code> | <code>According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates.</code> | <code>This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.</code> |
| <code>General comments on the relevant literature</code> | <code>Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties.</code> | <code>Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `learning_rate`: 0.02
- `num_train_epochs`: 50
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.02
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
|:-------:|:----:|:-------------:|:---------------:|:------------------------------:|
| -1 | -1 | - | - | 0.0860 |
| 1.1111 | 10 | 64.4072 | 61.6146 | 0.0919 |
| 2.2222 | 20 | 60.2737 | 56.0852 | 0.1130 |
| 3.3333 | 30 | 53.8742 | 50.1738 | 0.1611 |
| 4.4444 | 40 | 47.9741 | 45.6099 | 0.2666 |
| 5.5556 | 50 | 43.3533 | 42.3335 | 0.4579 |
| 6.6667 | 60 | 39.8746 | 40.0990 | 0.6244 |
| 7.7778 | 70 | 37.4077 | 38.4205 | 0.7223 |
| 8.8889 | 80 | 35.3558 | 37.0939 | 0.7847 |
| 10.0 | 90 | 33.5816 | 36.0200 | 0.8248 |
| 11.1111 | 100 | 32.4019 | 35.1148 | 0.8469 |
| 12.2222 | 110 | 31.3427 | 34.3602 | 0.8658 |
| 13.3333 | 120 | 30.4578 | 33.7324 | 0.8788 |
| 14.4444 | 130 | 29.7019 | 33.2120 | 0.8882 |
| 15.5556 | 140 | 29.1315 | 32.7679 | 0.8963 |
| 16.6667 | 150 | 28.6226 | 32.3942 | 0.9016 |
| 17.7778 | 160 | 28.195 | 32.0693 | 0.9061 |
| 18.8889 | 170 | 27.8242 | 31.7708 | 0.9096 |
| 20.0 | 180 | 27.373 | 31.5369 | 0.9137 |
| 21.1111 | 190 | 27.2436 | 31.3331 | 0.9168 |
| 22.2222 | 200 | 27.0084 | 31.1571 | 0.9188 |
| 23.3333 | 210 | 26.8023 | 31.0074 | 0.9205 |
| 24.4444 | 220 | 26.6754 | 30.8726 | 0.9217 |
| 25.5556 | 230 | 26.4875 | 30.7545 | 0.9224 |
| 26.6667 | 240 | 26.3846 | 30.6494 | 0.9236 |
| 27.7778 | 250 | 26.2546 | 30.5660 | 0.9243 |
| 28.8889 | 260 | 26.1752 | 30.4826 | 0.9248 |
| 30.0 | 270 | 25.9247 | 30.4060 | 0.9252 |
| 31.1111 | 280 | 25.9807 | 30.3540 | 0.9261 |
| 32.2222 | 290 | 25.9153 | 30.3040 | 0.9262 |
| 33.3333 | 300 | 25.8643 | 30.2585 | 0.9265 |
| 34.4444 | 310 | 25.7946 | 30.2183 | 0.9270 |
| 35.5556 | 320 | 25.7723 | 30.1799 | 0.9272 |
| 36.6667 | 330 | 25.7091 | 30.1539 | 0.9275 |
| 37.7778 | 340 | 25.6655 | 30.1296 | 0.9275 |
| 38.8889 | 350 | 25.6465 | 30.1120 | 0.9276 |
| 40.0 | 360 | 25.4654 | 30.0834 | 0.9279 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.0
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |