File size: 29,280 Bytes
867f9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:35934
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Stating purpose of the current research with reference to gaps
    or issues in the literature
  sentences:
  - During the 15-year study, 10% of the osseointegrated implants in the edentulous
    jaw showed signs of peri-implantitis, leading to their failure.
  - This paper provides an in-depth exploration of the qualitative case study methodology,
    addressing the lack of comprehensive guidance for novice researchers in this area.
  - As a novice researcher in management science, I have been drawn to the qualitative
    case study methodology due to its ability to provide rich, in-depth insights into
    complex real-world situations.
- source_sentence: Indicating missing, weak, or contradictory evidence
  sentences:
  - This paper contributes to the literature on the financial system by examining
    the relationship between bank size, bank capital, and the bank lending channel
    using a unique dataset of US banks during the global financial crisis.
  - A total of 150 patients with a clinical diagnosis of osteoarthritis of the hip
    or knee, according to the American College of Rheumatology criteria, were included
    in the study.
  - Despite the widespread use of the WOMAC (Western Ontario and McMaster Universities
    Osteoarthritis Index) questionnaire in clinical practice and research, there is
    a lack of consensus regarding its responsiveness to antirheumatic drug therapy
    in patients with osteoarthritis of the hip or knee.
- source_sentence: 'Establishing the importance of the topic for the world or society:
    time frame given'
  sentences:
  - The Th/Hf ratios of the basaltic lavas from the British Tertiary Volcanic Province
    range from 4.2 to 5.5, as shown in Table 1.
  - The use of organometal halide perovskites as visible-light sensitizers for photovoltaic
    cells has gained significant attention in the optoelectronics community due to
    their promising photovoltaic performance and cost-effective fabrication since
    the late 2000s.
  - Table 1 summarizes the power conversion efficiencies (PCEs) and certifications
    of the best-performing perovskite solar cells reported in the literature.
- source_sentence: Describing the research design and the methods used
  sentences:
  - This study aims to evaluate the efficacy and safety of preoperative radiotherapy
    followed by total mesorectal excision in the treatment of resectable rectal cancer.
  - TREE-PUZZLE's parallel computing implementation significantly reduces the time
    required for maximum likelihood phylogenetic analysis compared to traditional
    methods, supporting previous findings of the importance of parallelization in
    phylogenetics.
  - This study investigates the efficacy of preoperative radiotherapy followed by
    total mesorectal excision in the treatment of resectable rectal cancer.
- source_sentence: 'Surveys and interviews: Introducing excerpts from interview data'
  sentences:
  - Previous research on international trade under the WTO regime has explored various
    approaches to understanding the uneven promotion of trade (Hoekstra & Kostecki,
    2001; Cline, 2004, ...).
  - Through surveys and interviews, multiliterate teachers expressed a shared belief
    in the importance of fostering students' ability to navigate multiple discourse
    communities.
  - The authors employ a constructivist approach to learning, where students build
    knowledge through active engagement with multimedia texts and collaborative discussions.
datasets:
- Corran/SciGenTriplets
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: SciGen Eval Set
      type: SciGen-Eval-Set
    metrics:
    - type: cosine_accuracy@1
      value: 0.8918076580587712
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9307658058771149
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9481300089047195
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9668299198575245
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8918076580587712
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3102552686257049
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18962600178094388
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09668299198575243
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8918076580587712
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9307658058771149
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9481300089047195
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9668299198575245
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9279217256301748
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9156546382281018
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9171082586239344
      name: Cosine Map@100
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): StaticEmbedding(
    (embedding): EmbeddingBag(30522, 768, mode='mean')
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciGenNomicEmbedStatic")
# Run inference
sentences = [
    'Surveys and interviews: Introducing excerpts from interview data',
    "Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
    'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `SciGen-Eval-Set`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8918     |
| cosine_accuracy@3   | 0.9308     |
| cosine_accuracy@5   | 0.9481     |
| cosine_accuracy@10  | 0.9668     |
| cosine_precision@1  | 0.8918     |
| cosine_precision@3  | 0.3103     |
| cosine_precision@5  | 0.1896     |
| cosine_precision@10 | 0.0967     |
| cosine_recall@1     | 0.8918     |
| cosine_recall@3     | 0.9308     |
| cosine_recall@5     | 0.9481     |
| cosine_recall@10    | 0.9668     |
| **cosine_ndcg@10**  | **0.9279** |
| cosine_mrr@10       | 0.9157     |
| cosine_map@100      | 0.9171     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sci_gen_colbert_triplets

* Dataset: [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) at [44071bd](https://huggingface.co/datasets/Corran/SciGenColbertTriplets/tree/44071bdd857e9598233bd44a26a9433b46f25458)
* Size: 35,934 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | positive                                                                                        | negative                                                                                         |
  |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                          | string                                                                                           |
  | details | <ul><li>min: 20 characters</li><li>mean: 50.28 characters</li><li>max: 120 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 206.53 characters</li><li>max: 401 characters</li></ul> | <ul><li>min: 96 characters</li><li>mean: 209.67 characters</li><li>max: 418 characters</li></ul> |
* Samples:
  | query                                                            | positive                                                                                                                                                                                                                                      | negative                                                                                                                                                                                                                                                                                |
  |:-----------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Previous research: highlighting negative outcomes</code>   | <code>Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers.</code>                            | <code>This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.</code>                                                                                                                     |
  | <code>Synthesising sources: contrasting evidence or ideas</code> | <code>Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001).</code>                       | <code>Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.</code>                                                                              |
  | <code>Previous research: Approaches taken</code>                 | <code>Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988).</code> | <code>The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          384,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### sci_gen_colbert_triplets

* Dataset: [sci_gen_colbert_triplets](https://huggingface.co/datasets/Corran/SciGenColbertTriplets) at [44071bd](https://huggingface.co/datasets/Corran/SciGenColbertTriplets/tree/44071bdd857e9598233bd44a26a9433b46f25458)
* Size: 4,492 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | positive                                                                                         | negative                                                                                         |
  |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                           | string                                                                                           |
  | details | <ul><li>min: 20 characters</li><li>mean: 50.59 characters</li><li>max: 120 characters</li></ul> | <ul><li>min: 98 characters</li><li>mean: 203.98 characters</li><li>max: 448 characters</li></ul> | <ul><li>min: 36 characters</li><li>mean: 204.82 characters</li><li>max: 422 characters</li></ul> |
* Samples:
  | query                                                                                | positive                                                                                                                                                                                                               | negative                                                                                                                                                                                                                                                                                                                    |
  |:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Providing background information: reference to the purpose of the study</code> | <code>This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains.</code>                                      | <code>Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.</code>                                                                                       |
  | <code>Providing background information: reference to the literature</code>           | <code>According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates.</code>   | <code>This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.</code>                                                                                                 |
  | <code>General comments on the relevant literature</code>                             | <code>Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties.</code> | <code>Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          384,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `learning_rate`: 0.02
- `num_train_epochs`: 50
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.02
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
|:-------:|:----:|:-------------:|:---------------:|:------------------------------:|
| -1      | -1   | -             | -               | 0.0860                         |
| 1.1111  | 10   | 64.4072       | 61.6146         | 0.0919                         |
| 2.2222  | 20   | 60.2737       | 56.0852         | 0.1130                         |
| 3.3333  | 30   | 53.8742       | 50.1738         | 0.1611                         |
| 4.4444  | 40   | 47.9741       | 45.6099         | 0.2666                         |
| 5.5556  | 50   | 43.3533       | 42.3335         | 0.4579                         |
| 6.6667  | 60   | 39.8746       | 40.0990         | 0.6244                         |
| 7.7778  | 70   | 37.4077       | 38.4205         | 0.7223                         |
| 8.8889  | 80   | 35.3558       | 37.0939         | 0.7847                         |
| 10.0    | 90   | 33.5816       | 36.0200         | 0.8248                         |
| 11.1111 | 100  | 32.4019       | 35.1148         | 0.8469                         |
| 12.2222 | 110  | 31.3427       | 34.3602         | 0.8658                         |
| 13.3333 | 120  | 30.4578       | 33.7324         | 0.8788                         |
| 14.4444 | 130  | 29.7019       | 33.2120         | 0.8882                         |
| 15.5556 | 140  | 29.1315       | 32.7679         | 0.8963                         |
| 16.6667 | 150  | 28.6226       | 32.3942         | 0.9016                         |
| 17.7778 | 160  | 28.195        | 32.0693         | 0.9061                         |
| 18.8889 | 170  | 27.8242       | 31.7708         | 0.9096                         |
| 20.0    | 180  | 27.373        | 31.5369         | 0.9137                         |
| 21.1111 | 190  | 27.2436       | 31.3331         | 0.9168                         |
| 22.2222 | 200  | 27.0084       | 31.1571         | 0.9188                         |
| 23.3333 | 210  | 26.8023       | 31.0074         | 0.9205                         |
| 24.4444 | 220  | 26.6754       | 30.8726         | 0.9217                         |
| 25.5556 | 230  | 26.4875       | 30.7545         | 0.9224                         |
| 26.6667 | 240  | 26.3846       | 30.6494         | 0.9236                         |
| 27.7778 | 250  | 26.2546       | 30.5660         | 0.9243                         |
| 28.8889 | 260  | 26.1752       | 30.4826         | 0.9248                         |
| 30.0    | 270  | 25.9247       | 30.4060         | 0.9252                         |
| 31.1111 | 280  | 25.9807       | 30.3540         | 0.9261                         |
| 32.2222 | 290  | 25.9153       | 30.3040         | 0.9262                         |
| 33.3333 | 300  | 25.8643       | 30.2585         | 0.9265                         |
| 34.4444 | 310  | 25.7946       | 30.2183         | 0.9270                         |
| 35.5556 | 320  | 25.7723       | 30.1799         | 0.9272                         |
| 36.6667 | 330  | 25.7091       | 30.1539         | 0.9275                         |
| 37.7778 | 340  | 25.6655       | 30.1296         | 0.9275                         |
| 38.8889 | 350  | 25.6465       | 30.1120         | 0.9276                         |
| 40.0    | 360  | 25.4654       | 30.0834         | 0.9279                         |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.0
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->