CoolCreator commited on
Commit
a7c2ec5
·
verified ·
1 Parent(s): c711d3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -15
README.md CHANGED
@@ -1,9 +1,11 @@
1
  ---
 
 
2
  tags:
3
  - autotrain
4
  - text-generation
5
  - peft
6
- - chain-of-though
7
  - finetuned
8
  library_name: transformers
9
  base_model: tiiuae/Falcon3-3B-Instruct
@@ -12,37 +14,78 @@ widget:
12
  - role: user
13
  content: What is your favorite condiment?
14
  ---
 
15
 
16
- # This is a model trained to think in chain of thought. It was trained to think step ny step about problems.
17
- you can find the video explaining how this works, and more details below.
18
 
19
- Model Trained Using AutoTrain
20
- This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
21
 
22
- # Usage
23
 
24
- ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  from transformers import AutoModelForCausalLM, AutoTokenizer
27
 
28
- model_path = "PATH_TO_THIS_REPO"
29
 
 
30
  tokenizer = AutoTokenizer.from_pretrained(model_path)
31
  model = AutoModelForCausalLM.from_pretrained(
32
  model_path,
33
  device_map="auto",
34
- torch_dtype='auto'
35
  ).eval()
36
 
37
- # Prompt content: "hi"
38
  messages = [
39
  {"role": "user", "content": "hi"}
40
  ]
41
 
42
- input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
43
- output_ids = model.generate(input_ids.to('cuda'))
 
 
 
 
 
 
44
  response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
45
 
46
- # Model response: "Hello! How can I assist you today?"
47
- print(response)
48
- ```
 
1
  ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
  tags:
5
  - autotrain
6
  - text-generation
7
  - peft
8
+ - chain-of-thought
9
  - finetuned
10
  library_name: transformers
11
  base_model: tiiuae/Falcon3-3B-Instruct
 
14
  - role: user
15
  content: What is your favorite condiment?
16
  ---
17
+ # Model Card for FalconMind3B
18
 
19
+ This is a fine-tuned open-source model trained to excel in **chain-of-thought reasoning**. The model is designed to process tasks step by step, providing logical and structured responses for a wide range of applications.
 
20
 
21
+ ## Model Details
 
22
 
23
+ ### Model Description
24
 
25
+ FalconMind3B is a fine-tuned variant of the tiiuae/Falcon3-3B-Instruct model. It leverages **chain-of-thought reasoning** techniques to handle complex tasks requiring step-by-step thinking. The fine-tuning process was conducted using PEFT/LoRA on the Hugging Face AutoTrain platform.
26
+
27
+ - **Developed by:** Faris Allafi
28
+ - **Model type:** Text-generation (causal language modeling)
29
+ - **Language(s) (NLP):** English
30
+ - **License:** Apache 2.0
31
+ - **Finetuned from model:** tiiuae/Falcon3-3B-Instruct
32
+
33
+ ### Model Sources [optional]
34
+
35
+ - **Demo [optional]:** [Demo video link](#)
36
+
37
+ ## Uses
38
+
39
+ ### Direct Use
40
+
41
+ This model is designed for text generation tasks that require logical reasoning, including problem-solving, code explanations, and general Q&A applications.
42
+
43
+ ### Downstream Use [optional]
44
+
45
+ FalconMind3B can be fine-tuned further for specific tasks in education, programming, or other domains requiring detailed step-by-step reasoning.
46
 
47
+ ### Out-of-Scope Use
48
+
49
+ This model is not suitable for tasks requiring real-time interaction or applications that rely on languages other than English.
50
+
51
+ ## Bias, Risks, and Limitations
52
+
53
+ FalconMind3B is fine-tuned using synthetic datasets, which may introduce biases or limitations in generalization. It is recommended to test the model on your specific use cases to ensure reliability.
54
+
55
+ ### Recommendations
56
+
57
+ Users should be aware of potential biases and limitations when applying the model in high-stakes or sensitive scenarios.
58
+
59
+ ## How to Get Started with the Model
60
+
61
+ Use the code below to get started with the model:
62
+
63
+ ```python
64
  from transformers import AutoModelForCausalLM, AutoTokenizer
65
 
66
+ model_path = "CoolCreator/FalconMind3b"
67
 
68
+ # Load tokenizer and model
69
  tokenizer = AutoTokenizer.from_pretrained(model_path)
70
  model = AutoModelForCausalLM.from_pretrained(
71
  model_path,
72
  device_map="auto",
73
+ torch_dtype="auto"
74
  ).eval()
75
 
76
+ # Define chat messages
77
  messages = [
78
  {"role": "user", "content": "hi"}
79
  ]
80
 
81
+ # Generate response
82
+ input_ids = tokenizer.apply_chat_template(
83
+ conversation=messages,
84
+ tokenize=True,
85
+ add_generation_prompt=True,
86
+ return_tensors="pt"
87
+ )
88
+ output_ids = model.generate(input_ids.to("cuda"))
89
  response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
90
 
91
+ print(response) # Model response: "Hello! How can I assist you today?"