Convolution
commited on
Commit
·
f829504
1
Parent(s):
bc02632
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.86 +/- 0.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b86be1b2d3da1f7a53e11b885130385039f1becbf3bfcd0b7a595c98879c5ce1
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5956ee3ca0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f5956ee0720>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674416481700049175,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi7rUPgWQIz3fphI/i7rUPgWQIz3fphI/i7rUPgWQIz3fphI/i7rUPgWQIz3fphI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA48akPsgazr9ADdY/9p6zuvZm1r9DpOg+xL+wv/h6Jb5PKoO/gnwGv4YQuT/0L0e/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.4154857 0.03993227 0.57285875]\n [0.4154857 0.03993227 0.57285875]\n [0.4154857 0.03993227 0.57285875]\n [0.4154857 0.03993227 0.57285875]]",
|
60 |
+
"desired_goal": "[[ 3.2182989e-01 -1.6101923e+00 1.6722794e+00]\n [-1.3703990e-03 -1.6750171e+00 4.5437822e-01]\n [-1.3808522e+00 -1.6160190e-01 -1.0247287e+00]\n [-5.2533734e-01 1.4458168e+00 -7.7807546e-01]]",
|
61 |
+
"observation": "[[0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]\n [0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]\n [0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]\n [0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1d2GvPVeJz0U6oc76KOoPeg/oD01rPQ8XejrPOl25D0h4TU+dEIfvCfm8z161QQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.0164632 0.04086204 0.00414778]\n [ 0.08234388 0.07824689 0.02986727]\n [ 0.02879732 0.11155493 0.17761661]\n [-0.00972043 0.11909132 0.1297206 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIT8x6MZST9b+UhpRSlIwBbJRLMowBdJRHQKPbBIK+i8F1fZQoaAZoCWgPQwje5LfoZKnrv5SGlFKUaBVLMmgWR0Cj2srUsnRcdX2UKGgGaAloD0MIiIOEKF/Q+L+UhpRSlGgVSzJoFkdAo9qAV6/qPnV9lChoBmgJaA9DCKZDp+fd2O6/lIaUUpRoFUsyaBZHQKPaQyIHkcV1fZQoaAZoCWgPQwjLorCLogf1v5SGlFKUaBVLMmgWR0Cj3Bb79AHFdX2UKGgGaAloD0MIW5caoZ8p5b+UhpRSlGgVSzJoFkdAo9vdD0Dlo3V9lChoBmgJaA9DCFZGI59XvPW/lIaUUpRoFUsyaBZHQKPbkpAD7qJ1fZQoaAZoCWgPQwi4eHjPgWX4v5SGlFKUaBVLMmgWR0Cj21V09yLidX2UKGgGaAloD0MIoWr0aoBS5L+UhpRSlGgVSzJoFkdAo90jHIZIhHV9lChoBmgJaA9DCLaGUnsRDQHAlIaUUpRoFUsyaBZHQKPc6eYD1Xh1fZQoaAZoCWgPQwiismFNZVHsv5SGlFKUaBVLMmgWR0Cj3KAu7HyVdX2UKGgGaAloD0MIPxu5bko5+L+UhpRSlGgVSzJoFkdAo9xj/2kBS3V9lChoBmgJaA9DCGB3uvPEc/G/lIaUUpRoFUsyaBZHQKPeOLjPv8Z1fZQoaAZoCWgPQwjWrZ6T3jfuv5SGlFKUaBVLMmgWR0Cj3f7sv7FbdX2UKGgGaAloD0MIBkg0gSIW47+UhpRSlGgVSzJoFkdAo920bm2b5XV9lChoBmgJaA9DCBU8hVyp5+e/lIaUUpRoFUsyaBZHQKPddzkIX0p1fZQoaAZoCWgPQwiTG0XWGsrmv5SGlFKUaBVLMmgWR0Cj30UUoKD1dX2UKGgGaAloD0MIT+lg/Z9D6r+UhpRSlGgVSzJoFkdAo98LLU1AJXV9lChoBmgJaA9DCJhMFYxK6uS/lIaUUpRoFUsyaBZHQKPewKLsKLN1fZQoaAZoCWgPQwjWH2EYsOTnv5SGlFKUaBVLMmgWR0Cj3oN/nW8RdX2UKGgGaAloD0MIERssnKT56b+UhpRSlGgVSzJoFkdAo+Bb2Dg62nV9lChoBmgJaA9DCAFNhA1P7/C/lIaUUpRoFUsyaBZHQKPgIh0Qsf91fZQoaAZoCWgPQwiB64oZ4S30v5SGlFKUaBVLMmgWR0Cj39e/Ho5hdX2UKGgGaAloD0MIsHQ+PEsQ6r+UhpRSlGgVSzJoFkdAo9+amIj4YnV9lChoBmgJaA9DCKd5xyk6kuy/lIaUUpRoFUsyaBZHQKPhdlbu+h51fZQoaAZoCWgPQwgNchdhivLsv5SGlFKUaBVLMmgWR0Cj4TyCFsYVdX2UKGgGaAloD0MIstr8v+oI87+UhpRSlGgVSzJoFkdAo+DyGUOd5XV9lChoBmgJaA9DCC7JAbua/PO/lIaUUpRoFUsyaBZHQKPgtPJJXhh1fZQoaAZoCWgPQwiYbaetEcHtv5SGlFKUaBVLMmgWR0Cj4oDGtITXdX2UKGgGaAloD0MInPwWnSy18b+UhpRSlGgVSzJoFkdAo+JG0u14PnV9lChoBmgJaA9DCBxhURGnk/C/lIaUUpRoFUsyaBZHQKPh/GlQ/HJ1fZQoaAZoCWgPQwhpyHiUSvjsv5SGlFKUaBVLMmgWR0Cj4b9hy8zzdX2UKGgGaAloD0MIvTjx1Y5i9r+UhpRSlGgVSzJoFkdAo+OT8+A3DXV9lChoBmgJaA9DCKJGIcms3u2/lIaUUpRoFUsyaBZHQKPjWh9srNJ1fZQoaAZoCWgPQwjiqx3FOernv5SGlFKUaBVLMmgWR0Cj4w/29L6DdX2UKGgGaAloD0MIJ4kl5e4z9b+UhpRSlGgVSzJoFkdAo+LTdWQwK3V9lChoBmgJaA9DCNC0xMpo5PO/lIaUUpRoFUsyaBZHQKPkl3g1m8N1fZQoaAZoCWgPQwgz/n3GhYP1v5SGlFKUaBVLMmgWR0Cj5F2Yv38GdX2UKGgGaAloD0MIFeEmo8ow7r+UhpRSlGgVSzJoFkdAo+QTIDHOr3V9lChoBmgJaA9DCI19ycaD7fW/lIaUUpRoFUsyaBZHQKPj1eWOZLJ1fZQoaAZoCWgPQwjBH37+e3D/v5SGlFKUaBVLMmgWR0Cj5bSDqW1MdX2UKGgGaAloD0MIHmtGBrkL67+UhpRSlGgVSzJoFkdAo+V6yfL9uXV9lChoBmgJaA9DCHUfgNQmTvq/lIaUUpRoFUsyaBZHQKPlMFajesR1fZQoaAZoCWgPQwhHHLKBdDHwv5SGlFKUaBVLMmgWR0Cj5PODaoMsdX2UKGgGaAloD0MIX7Uy4Zf69b+UhpRSlGgVSzJoFkdAo+a8JdB0IXV9lChoBmgJaA9DCFK69C9JZfi/lIaUUpRoFUsyaBZHQKPmgjxkNF11fZQoaAZoCWgPQwgOvFruzIT4v5SGlFKUaBVLMmgWR0Cj5jec6NlzdX2UKGgGaAloD0MIIzDWNzCZAsCUhpRSlGgVSzJoFkdAo+X6b2Dg63V9lChoBmgJaA9DCNwQ4zWvavK/lIaUUpRoFUsyaBZHQKPnwenQ6ZJ1fZQoaAZoCWgPQwjirl5FRgfxv5SGlFKUaBVLMmgWR0Cj54fZ/Tb4dX2UKGgGaAloD0MIyNEcWfll/L+UhpRSlGgVSzJoFkdAo+c9XzUZvXV9lChoBmgJaA9DCJ0tILQefvy/lIaUUpRoFUsyaBZHQKPnACSRr8B1fZQoaAZoCWgPQwjqkQa3tQX5v5SGlFKUaBVLMmgWR0Cj6M0XP7emdX2UKGgGaAloD0MI5+PaUDEO/L+UhpRSlGgVSzJoFkdAo+iTdgv12HV9lChoBmgJaA9DCNP6WwLwD/a/lIaUUpRoFUsyaBZHQKPoSQ/X5Fh1fZQoaAZoCWgPQwj7yoP0FPn6v5SGlFKUaBVLMmgWR0Cj6AvxhDw6dX2UKGgGaAloD0MItK1mnfE99b+UhpRSlGgVSzJoFkdAo+nTtRekYXV9lChoBmgJaA9DCMpOP6iLVPC/lIaUUpRoFUsyaBZHQKPpmYgq3E11fZQoaAZoCWgPQwjTpBR0e8nuv5SGlFKUaBVLMmgWR0Cj6U8ox59mdX2UKGgGaAloD0MIdcx5xr5k+7+UhpRSlGgVSzJoFkdAo+kRuEVWS3V9lChoBmgJaA9DCNo7o61KIva/lIaUUpRoFUsyaBZHQKPq3VFx4pt1fZQoaAZoCWgPQwijBtMwfMTpv5SGlFKUaBVLMmgWR0Cj6qN+9alldX2UKGgGaAloD0MI8ppXdVaL+L+UhpRSlGgVSzJoFkdAo+pZFZxJd3V9lChoBmgJaA9DCBJpG3+isvS/lIaUUpRoFUsyaBZHQKPqG9Oh0yR1fZQoaAZoCWgPQwhORL+2frr0v5SGlFKUaBVLMmgWR0Cj7A9AX2ugdX2UKGgGaAloD0MI6Sec3Vrm9L+UhpRSlGgVSzJoFkdAo+vWHFglW3V9lChoBmgJaA9DCMucLouJDfm/lIaUUpRoFUsyaBZHQKPri7ZnL7p1fZQoaAZoCWgPQwiO6QlLPGDwv5SGlFKUaBVLMmgWR0Cj606YVqN7dX2UKGgGaAloD0MINgadEDro77+UhpRSlGgVSzJoFkdAo+0TwOOKfnV9lChoBmgJaA9DCBXikXh5uvS/lIaUUpRoFUsyaBZHQKPs2cbzbvh1fZQoaAZoCWgPQwhTl4xjJPvov5SGlFKUaBVLMmgWR0Cj7I9Riw0PdX2UKGgGaAloD0MIYDsYsU+A6r+UhpRSlGgVSzJoFkdAo+xSHmA9V3V9lChoBmgJaA9DCJUO1v85zPO/lIaUUpRoFUsyaBZHQKPuICCBf8d1fZQoaAZoCWgPQwgE/1vJjs3zv5SGlFKUaBVLMmgWR0Cj7eZD7ZWadX2UKGgGaAloD0MIXf5D+u1r7b+UhpRSlGgVSzJoFkdAo+2b41xbS3V9lChoBmgJaA9DCNhit88qs/C/lIaUUpRoFUsyaBZHQKPtXrMTviN1fZQoaAZoCWgPQwiWQbXBiajxv5SGlFKUaBVLMmgWR0Cj7yTU7Sy/dX2UKGgGaAloD0MIhGQBE7h14r+UhpRSlGgVSzJoFkdAo+7q+tbLU3V9lChoBmgJaA9DCBjt8UI6POa/lIaUUpRoFUsyaBZHQKPuoLqlgtx1fZQoaAZoCWgPQwiqnWFqS93wv5SGlFKUaBVLMmgWR0Cj7mPRzBAOdX2UKGgGaAloD0MIKUAUzJiC7L+UhpRSlGgVSzJoFkdAo/B5QtSQ5nV9lChoBmgJaA9DCO5fWWlSyvG/lIaUUpRoFUsyaBZHQKPwQCBf8dh1fZQoaAZoCWgPQwhflnZqLnfyv5SGlFKUaBVLMmgWR0Cj7/WvStvGdX2UKGgGaAloD0MIm8qisIsi6r+UhpRSlGgVSzJoFkdAo++4gHNX5nV9lChoBmgJaA9DCKpFRDF5A/S/lIaUUpRoFUsyaBZHQKPxjG1hLGt1fZQoaAZoCWgPQwiD3bBtUebrv5SGlFKUaBVLMmgWR0Cj8VKf4AS4dX2UKGgGaAloD0MIDp90IsFU5r+UhpRSlGgVSzJoFkdAo/EIO2AoX3V9lChoBmgJaA9DCH7ja88sifO/lIaUUpRoFUsyaBZHQKPwywD/2kB1fZQoaAZoCWgPQwiCdLFppdDyv5SGlFKUaBVLMmgWR0Cj8rk9ECvHdX2UKGgGaAloD0MIGcbdIFor8r+UhpRSlGgVSzJoFkdAo/KASzw+dXV9lChoBmgJaA9DCH9pUZ/kju2/lIaUUpRoFUsyaBZHQKPyNgjyFwl1fZQoaAZoCWgPQwgAPKJCdXPrv5SGlFKUaBVLMmgWR0Cj8fje0ojOdX2UKGgGaAloD0MICAQ6kzbV5L+UhpRSlGgVSzJoFkdAo/PSzAvcrXV9lChoBmgJaA9DCGZrfZHQluK/lIaUUpRoFUsyaBZHQKPzmNkOI691fZQoaAZoCWgPQwgbvK/Khcrgv5SGlFKUaBVLMmgWR0Cj805uyeI3dX2UKGgGaAloD0MIQ+IeSx+65r+UhpRSlGgVSzJoFkdAo/MRg5R0l3V9lChoBmgJaA9DCH++LViqC+y/lIaUUpRoFUsyaBZHQKP096wdKdx1fZQoaAZoCWgPQwhxrfawFwrev5SGlFKUaBVLMmgWR0Cj9L3yZrpJdX2UKGgGaAloD0MIMGXggJbu9L+UhpRSlGgVSzJoFkdAo/R0p3HJcXV9lChoBmgJaA9DCMoxWdx/ZN+/lIaUUpRoFUsyaBZHQKP0N8Sf16F1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65076244d69fbb9c7ba180222448eb2d85c6fb705752e1e2be225e3bf3677e70
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7cee447241459ddb9c666ac273a0eef28588ab0763c83b4e31592bebde8a44b
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5956ee3ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5956ee0720>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674416481700049175, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi7rUPgWQIz3fphI/i7rUPgWQIz3fphI/i7rUPgWQIz3fphI/i7rUPgWQIz3fphI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA48akPsgazr9ADdY/9p6zuvZm1r9DpOg+xL+wv/h6Jb5PKoO/gnwGv4YQuT/0L0e/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqLutQ+BZAjPd+mEj/Y5Qw8WllaO+thuTqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4154857 0.03993227 0.57285875]\n [0.4154857 0.03993227 0.57285875]\n [0.4154857 0.03993227 0.57285875]\n [0.4154857 0.03993227 0.57285875]]", "desired_goal": "[[ 3.2182989e-01 -1.6101923e+00 1.6722794e+00]\n [-1.3703990e-03 -1.6750171e+00 4.5437822e-01]\n [-1.3808522e+00 -1.6160190e-01 -1.0247287e+00]\n [-5.2533734e-01 1.4458168e+00 -7.7807546e-01]]", "observation": "[[0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]\n [0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]\n [0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]\n [0.4154857 0.03993227 0.57285875 0.00859972 0.00333174 0.00141436]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1d2GvPVeJz0U6oc76KOoPeg/oD01rPQ8XejrPOl25D0h4TU+dEIfvCfm8z161QQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0164632 0.04086204 0.00414778]\n [ 0.08234388 0.07824689 0.02986727]\n [ 0.02879732 0.11155493 0.17761661]\n [-0.00972043 0.11909132 0.1297206 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIT8x6MZST9b+UhpRSlIwBbJRLMowBdJRHQKPbBIK+i8F1fZQoaAZoCWgPQwje5LfoZKnrv5SGlFKUaBVLMmgWR0Cj2srUsnRcdX2UKGgGaAloD0MIiIOEKF/Q+L+UhpRSlGgVSzJoFkdAo9qAV6/qPnV9lChoBmgJaA9DCKZDp+fd2O6/lIaUUpRoFUsyaBZHQKPaQyIHkcV1fZQoaAZoCWgPQwjLorCLogf1v5SGlFKUaBVLMmgWR0Cj3Bb79AHFdX2UKGgGaAloD0MIW5caoZ8p5b+UhpRSlGgVSzJoFkdAo9vdD0Dlo3V9lChoBmgJaA9DCFZGI59XvPW/lIaUUpRoFUsyaBZHQKPbkpAD7qJ1fZQoaAZoCWgPQwi4eHjPgWX4v5SGlFKUaBVLMmgWR0Cj21V09yLidX2UKGgGaAloD0MIoWr0aoBS5L+UhpRSlGgVSzJoFkdAo90jHIZIhHV9lChoBmgJaA9DCLaGUnsRDQHAlIaUUpRoFUsyaBZHQKPc6eYD1Xh1fZQoaAZoCWgPQwiismFNZVHsv5SGlFKUaBVLMmgWR0Cj3KAu7HyVdX2UKGgGaAloD0MIPxu5bko5+L+UhpRSlGgVSzJoFkdAo9xj/2kBS3V9lChoBmgJaA9DCGB3uvPEc/G/lIaUUpRoFUsyaBZHQKPeOLjPv8Z1fZQoaAZoCWgPQwjWrZ6T3jfuv5SGlFKUaBVLMmgWR0Cj3f7sv7FbdX2UKGgGaAloD0MIBkg0gSIW47+UhpRSlGgVSzJoFkdAo920bm2b5XV9lChoBmgJaA9DCBU8hVyp5+e/lIaUUpRoFUsyaBZHQKPddzkIX0p1fZQoaAZoCWgPQwiTG0XWGsrmv5SGlFKUaBVLMmgWR0Cj30UUoKD1dX2UKGgGaAloD0MIT+lg/Z9D6r+UhpRSlGgVSzJoFkdAo98LLU1AJXV9lChoBmgJaA9DCJhMFYxK6uS/lIaUUpRoFUsyaBZHQKPewKLsKLN1fZQoaAZoCWgPQwjWH2EYsOTnv5SGlFKUaBVLMmgWR0Cj3oN/nW8RdX2UKGgGaAloD0MIERssnKT56b+UhpRSlGgVSzJoFkdAo+Bb2Dg62nV9lChoBmgJaA9DCAFNhA1P7/C/lIaUUpRoFUsyaBZHQKPgIh0Qsf91fZQoaAZoCWgPQwiB64oZ4S30v5SGlFKUaBVLMmgWR0Cj39e/Ho5hdX2UKGgGaAloD0MIsHQ+PEsQ6r+UhpRSlGgVSzJoFkdAo9+amIj4YnV9lChoBmgJaA9DCKd5xyk6kuy/lIaUUpRoFUsyaBZHQKPhdlbu+h51fZQoaAZoCWgPQwgNchdhivLsv5SGlFKUaBVLMmgWR0Cj4TyCFsYVdX2UKGgGaAloD0MIstr8v+oI87+UhpRSlGgVSzJoFkdAo+DyGUOd5XV9lChoBmgJaA9DCC7JAbua/PO/lIaUUpRoFUsyaBZHQKPgtPJJXhh1fZQoaAZoCWgPQwiYbaetEcHtv5SGlFKUaBVLMmgWR0Cj4oDGtITXdX2UKGgGaAloD0MInPwWnSy18b+UhpRSlGgVSzJoFkdAo+JG0u14PnV9lChoBmgJaA9DCBxhURGnk/C/lIaUUpRoFUsyaBZHQKPh/GlQ/HJ1fZQoaAZoCWgPQwhpyHiUSvjsv5SGlFKUaBVLMmgWR0Cj4b9hy8zzdX2UKGgGaAloD0MIvTjx1Y5i9r+UhpRSlGgVSzJoFkdAo+OT8+A3DXV9lChoBmgJaA9DCKJGIcms3u2/lIaUUpRoFUsyaBZHQKPjWh9srNJ1fZQoaAZoCWgPQwjiqx3FOernv5SGlFKUaBVLMmgWR0Cj4w/29L6DdX2UKGgGaAloD0MIJ4kl5e4z9b+UhpRSlGgVSzJoFkdAo+LTdWQwK3V9lChoBmgJaA9DCNC0xMpo5PO/lIaUUpRoFUsyaBZHQKPkl3g1m8N1fZQoaAZoCWgPQwgz/n3GhYP1v5SGlFKUaBVLMmgWR0Cj5F2Yv38GdX2UKGgGaAloD0MIFeEmo8ow7r+UhpRSlGgVSzJoFkdAo+QTIDHOr3V9lChoBmgJaA9DCI19ycaD7fW/lIaUUpRoFUsyaBZHQKPj1eWOZLJ1fZQoaAZoCWgPQwjBH37+e3D/v5SGlFKUaBVLMmgWR0Cj5bSDqW1MdX2UKGgGaAloD0MIHmtGBrkL67+UhpRSlGgVSzJoFkdAo+V6yfL9uXV9lChoBmgJaA9DCHUfgNQmTvq/lIaUUpRoFUsyaBZHQKPlMFajesR1fZQoaAZoCWgPQwhHHLKBdDHwv5SGlFKUaBVLMmgWR0Cj5PODaoMsdX2UKGgGaAloD0MIX7Uy4Zf69b+UhpRSlGgVSzJoFkdAo+a8JdB0IXV9lChoBmgJaA9DCFK69C9JZfi/lIaUUpRoFUsyaBZHQKPmgjxkNF11fZQoaAZoCWgPQwgOvFruzIT4v5SGlFKUaBVLMmgWR0Cj5jec6NlzdX2UKGgGaAloD0MIIzDWNzCZAsCUhpRSlGgVSzJoFkdAo+X6b2Dg63V9lChoBmgJaA9DCNwQ4zWvavK/lIaUUpRoFUsyaBZHQKPnwenQ6ZJ1fZQoaAZoCWgPQwjirl5FRgfxv5SGlFKUaBVLMmgWR0Cj54fZ/Tb4dX2UKGgGaAloD0MIyNEcWfll/L+UhpRSlGgVSzJoFkdAo+c9XzUZvXV9lChoBmgJaA9DCJ0tILQefvy/lIaUUpRoFUsyaBZHQKPnACSRr8B1fZQoaAZoCWgPQwjqkQa3tQX5v5SGlFKUaBVLMmgWR0Cj6M0XP7emdX2UKGgGaAloD0MI5+PaUDEO/L+UhpRSlGgVSzJoFkdAo+iTdgv12HV9lChoBmgJaA9DCNP6WwLwD/a/lIaUUpRoFUsyaBZHQKPoSQ/X5Fh1fZQoaAZoCWgPQwj7yoP0FPn6v5SGlFKUaBVLMmgWR0Cj6AvxhDw6dX2UKGgGaAloD0MItK1mnfE99b+UhpRSlGgVSzJoFkdAo+nTtRekYXV9lChoBmgJaA9DCMpOP6iLVPC/lIaUUpRoFUsyaBZHQKPpmYgq3E11fZQoaAZoCWgPQwjTpBR0e8nuv5SGlFKUaBVLMmgWR0Cj6U8ox59mdX2UKGgGaAloD0MIdcx5xr5k+7+UhpRSlGgVSzJoFkdAo+kRuEVWS3V9lChoBmgJaA9DCNo7o61KIva/lIaUUpRoFUsyaBZHQKPq3VFx4pt1fZQoaAZoCWgPQwijBtMwfMTpv5SGlFKUaBVLMmgWR0Cj6qN+9alldX2UKGgGaAloD0MI8ppXdVaL+L+UhpRSlGgVSzJoFkdAo+pZFZxJd3V9lChoBmgJaA9DCBJpG3+isvS/lIaUUpRoFUsyaBZHQKPqG9Oh0yR1fZQoaAZoCWgPQwhORL+2frr0v5SGlFKUaBVLMmgWR0Cj7A9AX2ugdX2UKGgGaAloD0MI6Sec3Vrm9L+UhpRSlGgVSzJoFkdAo+vWHFglW3V9lChoBmgJaA9DCMucLouJDfm/lIaUUpRoFUsyaBZHQKPri7ZnL7p1fZQoaAZoCWgPQwiO6QlLPGDwv5SGlFKUaBVLMmgWR0Cj606YVqN7dX2UKGgGaAloD0MINgadEDro77+UhpRSlGgVSzJoFkdAo+0TwOOKfnV9lChoBmgJaA9DCBXikXh5uvS/lIaUUpRoFUsyaBZHQKPs2cbzbvh1fZQoaAZoCWgPQwhTl4xjJPvov5SGlFKUaBVLMmgWR0Cj7I9Riw0PdX2UKGgGaAloD0MIYDsYsU+A6r+UhpRSlGgVSzJoFkdAo+xSHmA9V3V9lChoBmgJaA9DCJUO1v85zPO/lIaUUpRoFUsyaBZHQKPuICCBf8d1fZQoaAZoCWgPQwgE/1vJjs3zv5SGlFKUaBVLMmgWR0Cj7eZD7ZWadX2UKGgGaAloD0MIXf5D+u1r7b+UhpRSlGgVSzJoFkdAo+2b41xbS3V9lChoBmgJaA9DCNhit88qs/C/lIaUUpRoFUsyaBZHQKPtXrMTviN1fZQoaAZoCWgPQwiWQbXBiajxv5SGlFKUaBVLMmgWR0Cj7yTU7Sy/dX2UKGgGaAloD0MIhGQBE7h14r+UhpRSlGgVSzJoFkdAo+7q+tbLU3V9lChoBmgJaA9DCBjt8UI6POa/lIaUUpRoFUsyaBZHQKPuoLqlgtx1fZQoaAZoCWgPQwiqnWFqS93wv5SGlFKUaBVLMmgWR0Cj7mPRzBAOdX2UKGgGaAloD0MIKUAUzJiC7L+UhpRSlGgVSzJoFkdAo/B5QtSQ5nV9lChoBmgJaA9DCO5fWWlSyvG/lIaUUpRoFUsyaBZHQKPwQCBf8dh1fZQoaAZoCWgPQwhflnZqLnfyv5SGlFKUaBVLMmgWR0Cj7/WvStvGdX2UKGgGaAloD0MIm8qisIsi6r+UhpRSlGgVSzJoFkdAo++4gHNX5nV9lChoBmgJaA9DCKpFRDF5A/S/lIaUUpRoFUsyaBZHQKPxjG1hLGt1fZQoaAZoCWgPQwiD3bBtUebrv5SGlFKUaBVLMmgWR0Cj8VKf4AS4dX2UKGgGaAloD0MIDp90IsFU5r+UhpRSlGgVSzJoFkdAo/EIO2AoX3V9lChoBmgJaA9DCH7ja88sifO/lIaUUpRoFUsyaBZHQKPwywD/2kB1fZQoaAZoCWgPQwiCdLFppdDyv5SGlFKUaBVLMmgWR0Cj8rk9ECvHdX2UKGgGaAloD0MIGcbdIFor8r+UhpRSlGgVSzJoFkdAo/KASzw+dXV9lChoBmgJaA9DCH9pUZ/kju2/lIaUUpRoFUsyaBZHQKPyNgjyFwl1fZQoaAZoCWgPQwgAPKJCdXPrv5SGlFKUaBVLMmgWR0Cj8fje0ojOdX2UKGgGaAloD0MICAQ6kzbV5L+UhpRSlGgVSzJoFkdAo/PSzAvcrXV9lChoBmgJaA9DCGZrfZHQluK/lIaUUpRoFUsyaBZHQKPzmNkOI691fZQoaAZoCWgPQwgbvK/Khcrgv5SGlFKUaBVLMmgWR0Cj805uyeI3dX2UKGgGaAloD0MIQ+IeSx+65r+UhpRSlGgVSzJoFkdAo/MRg5R0l3V9lChoBmgJaA9DCH++LViqC+y/lIaUUpRoFUsyaBZHQKP096wdKdx1fZQoaAZoCWgPQwhxrfawFwrev5SGlFKUaBVLMmgWR0Cj9L3yZrpJdX2UKGgGaAloD0MIMGXggJbu9L+UhpRSlGgVSzJoFkdAo/R0p3HJcXV9lChoBmgJaA9DCMoxWdx/ZN+/lIaUUpRoFUsyaBZHQKP0N8Sf16F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (344 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.8565054177772253, "std_reward": 0.34588521599502775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T20:23:59.844636"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69bc439babd2f6694944c69923ffd9932ecc2e86c96568dfc3af8bb9bb5e1745
|
3 |
+
size 3056
|