Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
This model is extremely weak. I am not good at data science
|
2 |
-
|
3 |
---
|
4 |
license: other
|
5 |
license_name: joke
|
@@ -9,4 +7,84 @@ datasets:
|
|
9 |
pipeline_tag: audio-classification
|
10 |
tags:
|
11 |
- music
|
12 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: other
|
3 |
license_name: joke
|
|
|
7 |
pipeline_tag: audio-classification
|
8 |
tags:
|
9 |
- music
|
10 |
+
---
|
11 |
+
|
12 |
+
This model is extremely weak. I am not good at data science
|
13 |
+
|
14 |
+
# Iterations
|
15 |
+
**null**:
|
16 |
+
|
17 |
+
<details>
|
18 |
+
<summary><b>Trained on 500 Epoch with 2.1 million song data from Spotify Database</b></summary>
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.optim as optim
|
23 |
+
from sklearn.model_selection import train_test_split
|
24 |
+
from sklearn.preprocessing import StandardScaler
|
25 |
+
import pandas as pd
|
26 |
+
|
27 |
+
|
28 |
+
# Split the data into features and target variable
|
29 |
+
X = df[numerical_features[:-1]].values # all except popularity
|
30 |
+
y = df['popularity'].values
|
31 |
+
|
32 |
+
# Split into training and testing sets
|
33 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
34 |
+
|
35 |
+
# Standardize the features
|
36 |
+
scaler = StandardScaler()
|
37 |
+
X_train = scaler.fit_transform(X_train)
|
38 |
+
X_test = scaler.transform(X_test)
|
39 |
+
|
40 |
+
# Convert to PyTorch tensors
|
41 |
+
X_train_tensor = torch.FloatTensor(X_train)
|
42 |
+
y_train_tensor = torch.FloatTensor(y_train).view(-1, 1) # shape to (N, 1)
|
43 |
+
X_test_tensor = torch.FloatTensor(X_test)
|
44 |
+
y_test_tensor = torch.FloatTensor(y_test).view(-1, 1)
|
45 |
+
|
46 |
+
# Define the neural network model
|
47 |
+
class PopularityPredictor(nn.Module):
|
48 |
+
def __init__(self):
|
49 |
+
super(PopularityPredictor, self).__init__()
|
50 |
+
self.fc1 = nn.Linear(X_train.shape[1], 128)
|
51 |
+
self.fc2 = nn.Linear(128, 64)
|
52 |
+
self.fc3 = nn.Linear(64, 32)
|
53 |
+
self.fc4 = nn.Linear(32, 1)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
x = torch.relu(self.fc1(x))
|
57 |
+
x = torch.relu(self.fc2(x))
|
58 |
+
x = self.fc3(x)
|
59 |
+
return x
|
60 |
+
|
61 |
+
# Create an instance of the model
|
62 |
+
model = PopularityPredictor()
|
63 |
+
|
64 |
+
# Define the loss function and optimizer
|
65 |
+
criterion = nn.MSELoss()
|
66 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
67 |
+
|
68 |
+
# Train the model
|
69 |
+
num_epochs = 100
|
70 |
+
for epoch in range(num_epochs):
|
71 |
+
model.train()
|
72 |
+
optimizer.zero_grad()
|
73 |
+
|
74 |
+
# Forward pass
|
75 |
+
outputs = model(X_train_tensor)
|
76 |
+
loss = criterion(outputs, y_train_tensor)
|
77 |
+
|
78 |
+
# Backward pass and optimization
|
79 |
+
loss.backward()
|
80 |
+
optimizer.step()
|
81 |
+
|
82 |
+
if (epoch+1) % 10 == 0:
|
83 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
|
84 |
+
|
85 |
+
# Evaluate the model
|
86 |
+
model.eval()
|
87 |
+
with torch.no_grad():
|
88 |
+
predicted = model(X_test_tensor)
|
89 |
+
```
|
90 |
+
</details>
|