patrickvonplaten
commited on
Commit
·
ba75ac7
1
Parent(s):
18548df
some more images
Browse files- generated_image_pipeline.png +0 -0
- generated_image_unrolled.png +0 -0
- run.py +4 -4
generated_image_pipeline.png
CHANGED
generated_image_unrolled.png
CHANGED
run.py
CHANGED
@@ -19,14 +19,14 @@ unet.to(torch_device)
|
|
19 |
vqvae.to(torch_device)
|
20 |
|
21 |
# generate gaussian noise to be decoded
|
22 |
-
generator = torch.manual_seed(
|
23 |
noise = torch.randn(
|
24 |
(1, unet.in_channels, unet.image_size, unet.image_size),
|
25 |
generator=generator,
|
26 |
).to(torch_device)
|
27 |
|
28 |
# set inference steps for DDIM
|
29 |
-
scheduler.set_timesteps(num_inference_steps=
|
30 |
|
31 |
image = noise
|
32 |
for t in tqdm.tqdm(scheduler.timesteps):
|
@@ -64,8 +64,8 @@ import tqdm
|
|
64 |
pipeline = LatentDiffusionUncondPipeline.from_pretrained("./")
|
65 |
|
66 |
# generatae image by calling the pipeline
|
67 |
-
generator = torch.manual_seed(
|
68 |
-
image = pipeline(generator=generator, num_inference_steps=
|
69 |
|
70 |
# process image
|
71 |
image_processed = image.cpu().permute(0, 2, 3, 1)
|
|
|
19 |
vqvae.to(torch_device)
|
20 |
|
21 |
# generate gaussian noise to be decoded
|
22 |
+
generator = torch.manual_seed(1)
|
23 |
noise = torch.randn(
|
24 |
(1, unet.in_channels, unet.image_size, unet.image_size),
|
25 |
generator=generator,
|
26 |
).to(torch_device)
|
27 |
|
28 |
# set inference steps for DDIM
|
29 |
+
scheduler.set_timesteps(num_inference_steps=200)
|
30 |
|
31 |
image = noise
|
32 |
for t in tqdm.tqdm(scheduler.timesteps):
|
|
|
64 |
pipeline = LatentDiffusionUncondPipeline.from_pretrained("./")
|
65 |
|
66 |
# generatae image by calling the pipeline
|
67 |
+
generator = torch.manual_seed(1)
|
68 |
+
image = pipeline(generator=generator, num_inference_steps=200)["sample"]
|
69 |
|
70 |
# process image
|
71 |
image_processed = image.cpu().permute(0, 2, 3, 1)
|