|
|
--- |
|
|
license: mit |
|
|
pipeline_tag: video-text-to-text |
|
|
library_name: transformers |
|
|
--- |
|
|
|
|
|
# M4-Audio-LongVA-7B-Qwen2 |
|
|
|
|
|
Enhancing Omni Interactive Capabilities in MLLM |
|
|
|
|
|
This repository contains the model described in [OmniMMI: A Comprehensive Multi-modal Interaction Benchmark in Streaming Video Contexts](https://huggingface.co/papers/2503.22952). |
|
|
The code can be found at https://github.com/patrick-tssn/M4. |
|
|
|
|
|
 |
|
|
|
|
|
M4-Audio-7B is an extension of [LongVA-7B](https://github.com/EvolvingLMMs-Lab/LongVA), further trained using the [M4-IT](https://huggingface.co/datasets/ColorfulAI/M4-IT) dataset, which comprises 9,963 visual-audio instruction tuning instances. This training was conducted without any special modifications to the existing training pipeline. |
|
|
|
|
|
|
|
|
## Usage |
|
|
|
|
|
|
|
|
*Please refer to [M4](https://github.com/patrick-tssn/M4) to install relvevant packages* |
|
|
|
|
|
```python |
|
|
import os |
|
|
from PIL import Image |
|
|
import numpy as np |
|
|
import torchaudio |
|
|
import torch |
|
|
from decord import VideoReader, cpu |
|
|
import whisper |
|
|
# fix seed |
|
|
torch.manual_seed(0) |
|
|
|
|
|
from intersuit.model.builder import load_pretrained_model |
|
|
from intersuit.mm_utils import tokenizer_image_speech_tokens, process_images |
|
|
from intersuit.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX |
|
|
|
|
|
import ChatTTS |
|
|
chat = ChatTTS.Chat() |
|
|
chat.load(source='local', compile=True) |
|
|
|
|
|
import warnings |
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
model_path = "checkpoints/M4-Audio-LongVA-7B-Qwen2" |
|
|
video_path = "local_demo/assets/water.mp4" |
|
|
audio_path = "local_demo/wav/infer.wav" |
|
|
new_audio_path = "local_demo/wav/new_infer.wav" |
|
|
max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :) |
|
|
gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024} |
|
|
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0", attn_implementation="eager") |
|
|
|
|
|
# original query |
|
|
query = "Give a detailed caption of the video as if I am blind." |
|
|
query = None # comment this to use ChatTTS to convert the query to audio |
|
|
prompt = "<|im_start|>system |
|
|
You are a helpful assistant.<|im_end|> |
|
|
<|im_start|>user |
|
|
<image><|im_end|> |
|
|
<|im_start|>user |
|
|
<speech> |
|
|
<|im_end|> |
|
|
<|im_start|>assistant |
|
|
" |
|
|
input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) |
|
|
pad_token_ids = (tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id) |
|
|
attention_masks = input_ids.ne(pad_token_ids).to(input_ids.device) |
|
|
# audio input |
|
|
if query is not None: |
|
|
audio_path = "./local_demo/wav/" + "infer.wav" |
|
|
if os.path.exists(audio_path): os.remove(audio_path) # refresh |
|
|
if not os.path.exists(audio_path): |
|
|
wav = chat.infer(query) |
|
|
try: |
|
|
torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000) |
|
|
except: |
|
|
torchaudio.save(audio_path, torch.from_numpy(wav), 24000) |
|
|
speech = whisper.load_audio(audio_path) |
|
|
speech = whisper.pad_or_trim(speech) |
|
|
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16) |
|
|
speech_length = torch.LongTensor([speech.shape[0]]).to(model.device) |
|
|
|
|
|
# new query |
|
|
new_query = "How many people in the video?" |
|
|
new_query = "Okay, I see." |
|
|
new_query = "Sorry to interrupt." |
|
|
new_query_pos = 10 # which token encounter the new query |
|
|
new_query = None # comment this to use ChatTTS to convert the query to audio |
|
|
new_prompt = "<|im_start|>system |
|
|
You are a helpful assistant.<|im_end|> |
|
|
<|im_start|>user |
|
|
<speech> |
|
|
<|im_end|> |
|
|
<|im_start|>assistant |
|
|
" |
|
|
new_input_ids = tokenizer_image_speech_tokens(new_prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) |
|
|
# audio input |
|
|
if new_query is not None: |
|
|
new_audio_path = "./local_demo/wav/" + "new_infer.wav" |
|
|
if os.path.exists(new_audio_path): os.remove(new_audio_path) # refresh |
|
|
if not os.path.exists(new_audio_path): |
|
|
wav = chat.infer(new_query) |
|
|
try: |
|
|
torchaudio.save(new_audio_path, torch.from_numpy(wav).unsqueeze(0), 24000) |
|
|
except: |
|
|
torchaudio.save(new_audio_path, torch.from_numpy(wav), 24000) |
|
|
new_speech = whisper.load_audio(new_audio_path) |
|
|
new_speech = whisper.pad_or_trim(new_speech) |
|
|
new_speech = whisper.log_mel_spectrogram(new_speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16) |
|
|
new_speech_length = torch.LongTensor([new_speech.shape[0]]).to(model.device) |
|
|
|
|
|
#video input |
|
|
vr = VideoReader(video_path, ctx=cpu(0)) |
|
|
total_frame_num = len(vr) |
|
|
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) |
|
|
frame_idx = uniform_sampled_frames.tolist() |
|
|
frames = vr.get_batch(frame_idx).asnumpy() |
|
|
video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.bfloat16) |
|
|
|
|
|
|
|
|
with torch.inference_mode(): |
|
|
output_ids = model.generate_parallel(input_ids, |
|
|
attention_mask=attention_masks, |
|
|
images=[video_tensor], |
|
|
modalities=["video"], |
|
|
speeches=speech.unsqueeze(0), |
|
|
speech_lengths=speech_length, |
|
|
new_query=new_input_ids, |
|
|
new_query_pos=new_query_pos, |
|
|
new_speeches=new_speech.unsqueeze(0), |
|
|
new_speech_lengths=new_speech_length, |
|
|
query_str=query, |
|
|
new_query_str=new_query, |
|
|
tokenizer=tokenizer, |
|
|
**gen_kwargs) |
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
For more information about the interaction inference pipeline, please visit the [M4 GitHub repository](https://github.com/patrick-tssn/M4). |