AdithyaSK commited on
Commit
fb5dc91
·
verified ·
1 Parent(s): 022bda9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +180 -189
README.md CHANGED
@@ -8,192 +8,183 @@ tags: []
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
+ ```python
12
+ from transformers import AutoModelForCausalLM, AutoTokenizer
13
+ import torch
14
+ from typing import List, Optional
15
+ import numpy as np
16
+ from datetime import datetime
17
+
18
+ class TextStreamer:
19
+ def __init__(self, tokenizer, output_file=None):
20
+ self.tokenizer = tokenizer
21
+ self.current_tokens = []
22
+ self.output_file = output_file
23
+ self.full_response = ""
24
+
25
+ def put(self, value):
26
+ if isinstance(value, torch.Tensor):
27
+ value = value.cpu().numpy()
28
+ if len(value.shape) > 1:
29
+ value = value[0]
30
+
31
+ if isinstance(value, np.ndarray):
32
+ value = value.tolist()
33
+
34
+ if isinstance(value, list):
35
+ if isinstance(value[0], list):
36
+ value = value[0]
37
+ self.current_tokens.extend(value)
38
+ else:
39
+ self.current_tokens.append(value)
40
+
41
+ tokens_to_decode = [int(token) for token in self.current_tokens]
42
+ text = self.tokenizer.decode(tokens_to_decode, skip_special_tokens=True)
43
+
44
+ if len(self.current_tokens) > len(value):
45
+ previous_text = self.tokenizer.decode(
46
+ [int(token) for token in self.current_tokens[:-len(value) if isinstance(value, list) else -1]],
47
+ skip_special_tokens=True
48
+ )
49
+ new_text = text[len(previous_text):]
50
+ else:
51
+ new_text = text
52
+
53
+ if new_text:
54
+ print(new_text, end="", flush=True)
55
+ self.full_response += new_text
56
+
57
+ def end(self):
58
+ print("")
59
+ if self.output_file:
60
+ with open(self.output_file, 'a', encoding='utf-8') as f:
61
+ f.write(f"\n--- Response generated at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n")
62
+ f.write(self.full_response)
63
+ f.write("\n\n")
64
+ return self.full_response
65
+
66
+ class Translator:
67
+ DEFAULT_SYSTEM_PROMPT = """
68
+ You are a skilled linguistic expert specializing in cross-lingual translation. Your task is to perform accurate and detailed translations, moving from a given source language to a specified destination language.
69
+ You will perform the translation by thinking and reasoning step-by-step by and demonstrating the linguistic transformation process while maintaining the source context.
70
+
71
+ # Output Format
72
+
73
+ Your translation responses should be structured as follows:
74
+
75
+ ```
76
+ <think>
77
+ [Detailed thinking and reasoning process, including the analysis and breakdown of the sentence]
78
+ </think>
79
+ <translation>
80
+ [Final translated sentence based on the step-by-step reasoning]
81
+ </translation>
82
+ ```
83
+
84
+ Stick to the above formate and exclose the final translation in <translation>{translated sentence}</translation>
85
+ """
86
+
87
+ def __init__(
88
+ self,
89
+ model_name: str,
90
+ system_prompt: Optional[str] = None,
91
+ device_map: str = "auto",
92
+ torch_dtype: str = "auto"
93
+ ):
94
+ """
95
+ Initialize the translator with a model and tokenizer.
96
+
97
+ Args:
98
+ model_name: Path or name of the model to load
99
+ system_prompt: Optional custom system prompt
100
+ device_map: Device mapping strategy for model loading
101
+ torch_dtype: Torch data type for model
102
+ """
103
+ self.model = AutoModelForCausalLM.from_pretrained(
104
+ model_name,
105
+ torch_dtype=torch_dtype,
106
+ device_map=device_map
107
+ )
108
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
109
+ self.system_prompt = system_prompt or self.DEFAULT_SYSTEM_PROMPT
110
+
111
+ def translate(
112
+ self,
113
+ text: str,
114
+ max_new_tokens: int = 2048,
115
+ temperature: float = 0.1,
116
+ top_p: float = 0.7,
117
+ output_file: Optional[str] = None
118
+ ) -> str:
119
+ """
120
+ Translate the given text using the loaded model.
121
+
122
+ Args:
123
+ text: Text to translate
124
+ max_new_tokens: Maximum number of tokens to generate
125
+ temperature: Temperature for generation
126
+ top_p: Top-p sampling parameter
127
+ output_file: Optional file to save the translation
128
+
129
+ Returns:
130
+ str: The translated text
131
+ """
132
+ # Prepare messages
133
+ messages = [
134
+ {"role": "system", "content": self.system_prompt},
135
+ {"role": "user", "content": text}
136
+ ]
137
+
138
+ # Apply chat template
139
+ prompt = self.tokenizer.apply_chat_template(
140
+ messages,
141
+ tokenize=False,
142
+ add_generation_prompt=True
143
+ )
144
+
145
+ # Tokenize input
146
+ model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.model.device)
147
+
148
+ # Create streamer
149
+ streamer = TextStreamer(self.tokenizer, output_file=output_file)
150
+
151
+ # Generate with streaming
152
+ self.model.generate(
153
+ **model_inputs,
154
+ max_new_tokens=max_new_tokens,
155
+ temperature=temperature,
156
+ top_p=top_p,
157
+ streamer=streamer
158
+ )
159
+
160
+ return streamer.end()
161
+
162
+ def __call__(self, *args, **kwargs) -> str:
163
+ """
164
+ Make the translator callable directly.
165
+ """
166
+ return self.translate(*args, **kwargs)
167
+
168
+ # %%
169
+ translator = Translator(
170
+ model_name="CoT-Translator/Llama-3b-Reasoning-Translate"
171
+ )
172
+
173
+ # %%
174
+ # Use it multiple times
175
+ texts = [
176
+ # "संक्रमित चमगादड़ निपाह विषाणु को सूअरों जैसे अन्य जानवरों में भी फैला सकते हैं। .translate from hindi to english",
177
+ "how are you doing today and what is your name .translate from english to hindi",
178
+ # "सफरचंदसाठी आजचा दिवस खरोखर चांगला आहे आणि मला खूप मजा येत आहे. translate from marathi to english"
179
+ # "Today's day is really good for Safar Chand and I'm having a lot of fun. translate from english to marathi"
180
+ ]
181
+
182
+ for text in texts:
183
+ print(f"\nTranslating: {text}")
184
+ translation = translator(
185
+ text,
186
+ output_file="translation_responses_llama_translate.txt"
187
+ )
188
+ print(f"Complete translation: {translation}\n")
189
+
190
+ ```