CloXD's picture
Upload . with huggingface_hub
3170c45
[2023-03-03 15:23:26,156][90258] Saving configuration to /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/config.json...
[2023-03-03 15:23:26,157][90258] Rollout worker 0 uses device cpu
[2023-03-03 15:23:26,157][90258] Rollout worker 1 uses device cpu
[2023-03-03 15:23:26,158][90258] Rollout worker 2 uses device cpu
[2023-03-03 15:23:26,158][90258] Rollout worker 3 uses device cpu
[2023-03-03 15:23:26,159][90258] Rollout worker 4 uses device cpu
[2023-03-03 15:23:26,159][90258] Rollout worker 5 uses device cpu
[2023-03-03 15:23:26,159][90258] Rollout worker 6 uses device cpu
[2023-03-03 15:23:26,160][90258] Rollout worker 7 uses device cpu
[2023-03-03 15:23:26,186][90258] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-03-03 15:23:26,187][90258] InferenceWorker_p0-w0: min num requests: 2
[2023-03-03 15:23:26,203][90258] Starting all processes...
[2023-03-03 15:23:26,203][90258] Starting process learner_proc0
[2023-03-03 15:23:26,253][90258] Starting all processes...
[2023-03-03 15:23:26,257][90258] Starting process inference_proc0-0
[2023-03-03 15:23:26,257][90258] Starting process rollout_proc0
[2023-03-03 15:23:26,257][90258] Starting process rollout_proc1
[2023-03-03 15:23:26,258][90258] Starting process rollout_proc2
[2023-03-03 15:23:26,258][90258] Starting process rollout_proc3
[2023-03-03 15:23:26,259][90258] Starting process rollout_proc4
[2023-03-03 15:23:26,259][90258] Starting process rollout_proc5
[2023-03-03 15:23:26,260][90258] Starting process rollout_proc6
[2023-03-03 15:23:26,261][90258] Starting process rollout_proc7
[2023-03-03 15:23:27,164][90462] Worker 0 uses CPU cores [0, 1]
[2023-03-03 15:23:27,250][90447] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-03-03 15:23:27,250][90447] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-03-03 15:23:27,260][90461] Worker 1 uses CPU cores [2, 3]
[2023-03-03 15:23:27,262][90460] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-03-03 15:23:27,262][90460] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-03-03 15:23:27,264][90447] Num visible devices: 1
[2023-03-03 15:23:27,265][90463] Worker 3 uses CPU cores [6, 7]
[2023-03-03 15:23:27,265][90466] Worker 5 uses CPU cores [10, 11]
[2023-03-03 15:23:27,266][90460] Num visible devices: 1
[2023-03-03 15:23:27,301][90447] Starting seed is not provided
[2023-03-03 15:23:27,302][90447] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-03-03 15:23:27,302][90483] Worker 6 uses CPU cores [12, 13]
[2023-03-03 15:23:27,302][90447] Initializing actor-critic model on device cuda:0
[2023-03-03 15:23:27,302][90447] RunningMeanStd input shape: (3, 72, 128)
[2023-03-03 15:23:27,302][90447] RunningMeanStd input shape: (1,)
[2023-03-03 15:23:27,310][90447] ConvEncoder: input_channels=3
[2023-03-03 15:23:27,333][90464] Worker 2 uses CPU cores [4, 5]
[2023-03-03 15:23:27,400][90447] Conv encoder output size: 512
[2023-03-03 15:23:27,400][90447] Policy head output size: 512
[2023-03-03 15:23:27,403][90482] Worker 7 uses CPU cores [14, 15]
[2023-03-03 15:23:27,408][90447] Created Actor Critic model with architecture:
[2023-03-03 15:23:27,408][90447] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2023-03-03 15:23:27,416][90465] Worker 4 uses CPU cores [8, 9]
[2023-03-03 15:23:30,183][90447] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-03-03 15:23:30,183][90447] No checkpoints found
[2023-03-03 15:23:30,184][90447] Did not load from checkpoint, starting from scratch!
[2023-03-03 15:23:30,184][90447] Initialized policy 0 weights for model version 0
[2023-03-03 15:23:30,186][90447] LearnerWorker_p0 finished initialization!
[2023-03-03 15:23:30,186][90447] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-03-03 15:23:30,219][90460] RunningMeanStd input shape: (3, 72, 128)
[2023-03-03 15:23:30,219][90460] RunningMeanStd input shape: (1,)
[2023-03-03 15:23:30,226][90460] ConvEncoder: input_channels=3
[2023-03-03 15:23:30,290][90460] Conv encoder output size: 512
[2023-03-03 15:23:30,290][90460] Policy head output size: 512
[2023-03-03 15:23:32,995][90258] Inference worker 0-0 is ready!
[2023-03-03 15:23:32,996][90258] All inference workers are ready! Signal rollout workers to start!
[2023-03-03 15:23:33,013][90464] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,013][90462] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,014][90483] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,015][90465] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,018][90482] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,018][90463] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,018][90466] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,019][90461] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:23:33,206][90463] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,239][90462] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,243][90465] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,275][90483] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,276][90464] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,395][90466] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,439][90462] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,442][90465] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,457][90483] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,464][90464] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,473][90463] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,514][90482] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,578][90466] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,634][90462] Decorrelating experience for 64 frames...
[2023-03-03 15:23:33,647][90483] Decorrelating experience for 64 frames...
[2023-03-03 15:23:33,678][90461] Decorrelating experience for 0 frames...
[2023-03-03 15:23:33,725][90482] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,763][90463] Decorrelating experience for 64 frames...
[2023-03-03 15:23:33,766][90466] Decorrelating experience for 64 frames...
[2023-03-03 15:23:33,805][90464] Decorrelating experience for 64 frames...
[2023-03-03 15:23:33,945][90463] Decorrelating experience for 96 frames...
[2023-03-03 15:23:33,956][90461] Decorrelating experience for 32 frames...
[2023-03-03 15:23:33,987][90483] Decorrelating experience for 96 frames...
[2023-03-03 15:23:34,000][90465] Decorrelating experience for 64 frames...
[2023-03-03 15:23:34,014][90466] Decorrelating experience for 96 frames...
[2023-03-03 15:23:34,042][90464] Decorrelating experience for 96 frames...
[2023-03-03 15:23:34,193][90482] Decorrelating experience for 64 frames...
[2023-03-03 15:23:34,215][90462] Decorrelating experience for 96 frames...
[2023-03-03 15:23:34,230][90465] Decorrelating experience for 96 frames...
[2023-03-03 15:23:34,267][90461] Decorrelating experience for 64 frames...
[2023-03-03 15:23:34,431][90447] Signal inference workers to stop experience collection...
[2023-03-03 15:23:34,433][90460] InferenceWorker_p0-w0: stopping experience collection
[2023-03-03 15:23:34,471][90482] Decorrelating experience for 96 frames...
[2023-03-03 15:23:34,478][90461] Decorrelating experience for 96 frames...
[2023-03-03 15:23:34,676][90447] Signal inference workers to resume experience collection...
[2023-03-03 15:23:34,676][90460] InferenceWorker_p0-w0: resuming experience collection
[2023-03-03 15:23:34,989][90258] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4096. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2023-03-03 15:23:34,990][90258] Avg episode reward: [(0, '3.176')]
[2023-03-03 15:23:36,121][90460] Updated weights for policy 0, policy_version 10 (0.0193)
[2023-03-03 15:23:37,294][90460] Updated weights for policy 0, policy_version 20 (0.0006)
[2023-03-03 15:23:38,492][90460] Updated weights for policy 0, policy_version 30 (0.0006)
[2023-03-03 15:23:39,622][90460] Updated weights for policy 0, policy_version 40 (0.0006)
[2023-03-03 15:23:39,989][90258] Fps is (10 sec: 34406.6, 60 sec: 34406.6, 300 sec: 34406.6). Total num frames: 176128. Throughput: 0: 7185.6. Samples: 35928. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-03-03 15:23:39,990][90258] Avg episode reward: [(0, '4.483')]
[2023-03-03 15:23:39,990][90447] Saving new best policy, reward=4.483!
[2023-03-03 15:23:40,811][90460] Updated weights for policy 0, policy_version 50 (0.0005)
[2023-03-03 15:23:42,034][90460] Updated weights for policy 0, policy_version 60 (0.0006)
[2023-03-03 15:23:43,222][90460] Updated weights for policy 0, policy_version 70 (0.0006)
[2023-03-03 15:23:44,405][90460] Updated weights for policy 0, policy_version 80 (0.0005)
[2023-03-03 15:23:44,989][90258] Fps is (10 sec: 34406.4, 60 sec: 34406.4, 300 sec: 34406.4). Total num frames: 348160. Throughput: 0: 6194.2. Samples: 61942. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:23:44,990][90258] Avg episode reward: [(0, '4.403')]
[2023-03-03 15:23:45,560][90460] Updated weights for policy 0, policy_version 90 (0.0006)
[2023-03-03 15:23:46,182][90258] Heartbeat connected on Batcher_0
[2023-03-03 15:23:46,184][90258] Heartbeat connected on LearnerWorker_p0
[2023-03-03 15:23:46,188][90258] Heartbeat connected on InferenceWorker_p0-w0
[2023-03-03 15:23:46,191][90258] Heartbeat connected on RolloutWorker_w0
[2023-03-03 15:23:46,192][90258] Heartbeat connected on RolloutWorker_w1
[2023-03-03 15:23:46,195][90258] Heartbeat connected on RolloutWorker_w2
[2023-03-03 15:23:46,196][90258] Heartbeat connected on RolloutWorker_w3
[2023-03-03 15:23:46,197][90258] Heartbeat connected on RolloutWorker_w4
[2023-03-03 15:23:46,199][90258] Heartbeat connected on RolloutWorker_w5
[2023-03-03 15:23:46,201][90258] Heartbeat connected on RolloutWorker_w6
[2023-03-03 15:23:46,203][90258] Heartbeat connected on RolloutWorker_w7
[2023-03-03 15:23:46,790][90460] Updated weights for policy 0, policy_version 100 (0.0006)
[2023-03-03 15:23:47,979][90460] Updated weights for policy 0, policy_version 110 (0.0006)
[2023-03-03 15:23:49,185][90460] Updated weights for policy 0, policy_version 120 (0.0006)
[2023-03-03 15:23:49,989][90258] Fps is (10 sec: 33996.5, 60 sec: 34133.2, 300 sec: 34133.2). Total num frames: 516096. Throughput: 0: 7577.6. Samples: 113664. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-03-03 15:23:49,990][90258] Avg episode reward: [(0, '4.594')]
[2023-03-03 15:23:49,990][90447] Saving new best policy, reward=4.594!
[2023-03-03 15:23:50,416][90460] Updated weights for policy 0, policy_version 130 (0.0006)
[2023-03-03 15:23:51,625][90460] Updated weights for policy 0, policy_version 140 (0.0006)
[2023-03-03 15:23:52,888][90460] Updated weights for policy 0, policy_version 150 (0.0006)
[2023-03-03 15:23:54,175][90460] Updated weights for policy 0, policy_version 160 (0.0006)
[2023-03-03 15:23:54,989][90258] Fps is (10 sec: 33177.3, 60 sec: 33791.8, 300 sec: 33791.8). Total num frames: 679936. Throughput: 0: 8178.2. Samples: 163564. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-03-03 15:23:54,990][90258] Avg episode reward: [(0, '4.407')]
[2023-03-03 15:23:55,439][90460] Updated weights for policy 0, policy_version 170 (0.0006)
[2023-03-03 15:23:56,723][90460] Updated weights for policy 0, policy_version 180 (0.0006)
[2023-03-03 15:23:57,871][90460] Updated weights for policy 0, policy_version 190 (0.0006)
[2023-03-03 15:23:59,063][90460] Updated weights for policy 0, policy_version 200 (0.0006)
[2023-03-03 15:23:59,989][90258] Fps is (10 sec: 33587.5, 60 sec: 33914.9, 300 sec: 33914.9). Total num frames: 851968. Throughput: 0: 7503.7. Samples: 187592. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:23:59,990][90258] Avg episode reward: [(0, '4.461')]
[2023-03-03 15:24:00,229][90460] Updated weights for policy 0, policy_version 210 (0.0006)
[2023-03-03 15:24:01,402][90460] Updated weights for policy 0, policy_version 220 (0.0006)
[2023-03-03 15:24:02,561][90460] Updated weights for policy 0, policy_version 230 (0.0005)
[2023-03-03 15:24:03,727][90460] Updated weights for policy 0, policy_version 240 (0.0005)
[2023-03-03 15:24:04,901][90460] Updated weights for policy 0, policy_version 250 (0.0005)
[2023-03-03 15:24:04,989][90258] Fps is (10 sec: 34406.4, 60 sec: 33996.7, 300 sec: 33996.7). Total num frames: 1024000. Throughput: 0: 8010.4. Samples: 240312. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-03-03 15:24:04,990][90258] Avg episode reward: [(0, '4.572')]
[2023-03-03 15:24:06,091][90460] Updated weights for policy 0, policy_version 260 (0.0005)
[2023-03-03 15:24:07,335][90460] Updated weights for policy 0, policy_version 270 (0.0006)
[2023-03-03 15:24:08,625][90460] Updated weights for policy 0, policy_version 280 (0.0006)
[2023-03-03 15:24:09,862][90460] Updated weights for policy 0, policy_version 290 (0.0006)
[2023-03-03 15:24:09,989][90258] Fps is (10 sec: 33587.1, 60 sec: 33821.3, 300 sec: 33821.3). Total num frames: 1187840. Throughput: 0: 8302.5. Samples: 290586. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:24:09,989][90258] Avg episode reward: [(0, '4.823')]
[2023-03-03 15:24:09,990][90447] Saving new best policy, reward=4.823!
[2023-03-03 15:24:11,103][90460] Updated weights for policy 0, policy_version 300 (0.0006)
[2023-03-03 15:24:12,385][90460] Updated weights for policy 0, policy_version 310 (0.0006)
[2023-03-03 15:24:13,708][90460] Updated weights for policy 0, policy_version 320 (0.0007)
[2023-03-03 15:24:14,989][90258] Fps is (10 sec: 32358.4, 60 sec: 33587.1, 300 sec: 33587.1). Total num frames: 1347584. Throughput: 0: 7887.0. Samples: 315482. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:24:14,990][90258] Avg episode reward: [(0, '5.670')]
[2023-03-03 15:24:15,017][90447] Saving new best policy, reward=5.670!
[2023-03-03 15:24:15,017][90460] Updated weights for policy 0, policy_version 330 (0.0006)
[2023-03-03 15:24:16,218][90460] Updated weights for policy 0, policy_version 340 (0.0006)
[2023-03-03 15:24:17,427][90460] Updated weights for policy 0, policy_version 350 (0.0006)
[2023-03-03 15:24:18,611][90460] Updated weights for policy 0, policy_version 360 (0.0006)
[2023-03-03 15:24:19,810][90460] Updated weights for policy 0, policy_version 370 (0.0006)
[2023-03-03 15:24:19,989][90258] Fps is (10 sec: 33177.5, 60 sec: 33678.2, 300 sec: 33678.2). Total num frames: 1519616. Throughput: 0: 8092.0. Samples: 364138. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:24:19,990][90258] Avg episode reward: [(0, '6.905')]
[2023-03-03 15:24:19,990][90447] Saving new best policy, reward=6.905!
[2023-03-03 15:24:21,119][90460] Updated weights for policy 0, policy_version 380 (0.0007)
[2023-03-03 15:24:22,347][90460] Updated weights for policy 0, policy_version 390 (0.0006)
[2023-03-03 15:24:23,571][90460] Updated weights for policy 0, policy_version 400 (0.0006)
[2023-03-03 15:24:24,782][90460] Updated weights for policy 0, policy_version 410 (0.0006)
[2023-03-03 15:24:24,989][90258] Fps is (10 sec: 33587.4, 60 sec: 33587.2, 300 sec: 33587.2). Total num frames: 1683456. Throughput: 0: 8403.9. Samples: 414104. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-03-03 15:24:24,990][90258] Avg episode reward: [(0, '7.918')]
[2023-03-03 15:24:24,993][90447] Saving new best policy, reward=7.918!
[2023-03-03 15:24:26,008][90460] Updated weights for policy 0, policy_version 420 (0.0006)
[2023-03-03 15:24:27,167][90460] Updated weights for policy 0, policy_version 430 (0.0006)
[2023-03-03 15:24:28,337][90460] Updated weights for policy 0, policy_version 440 (0.0006)
[2023-03-03 15:24:29,516][90460] Updated weights for policy 0, policy_version 450 (0.0006)
[2023-03-03 15:24:29,990][90258] Fps is (10 sec: 33992.3, 60 sec: 33735.3, 300 sec: 33735.3). Total num frames: 1859584. Throughput: 0: 8396.3. Samples: 439788. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-03-03 15:24:29,991][90258] Avg episode reward: [(0, '10.319')]
[2023-03-03 15:24:29,992][90447] Saving new best policy, reward=10.319!
[2023-03-03 15:24:30,685][90460] Updated weights for policy 0, policy_version 460 (0.0006)
[2023-03-03 15:24:31,866][90460] Updated weights for policy 0, policy_version 470 (0.0006)
[2023-03-03 15:24:33,058][90460] Updated weights for policy 0, policy_version 480 (0.0006)
[2023-03-03 15:24:34,278][90460] Updated weights for policy 0, policy_version 490 (0.0006)
[2023-03-03 15:24:34,989][90258] Fps is (10 sec: 34406.6, 60 sec: 33723.7, 300 sec: 33723.7). Total num frames: 2027520. Throughput: 0: 8403.7. Samples: 491828. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:24:34,989][90258] Avg episode reward: [(0, '11.640')]
[2023-03-03 15:24:35,007][90447] Saving new best policy, reward=11.640!
[2023-03-03 15:24:35,499][90460] Updated weights for policy 0, policy_version 500 (0.0006)
[2023-03-03 15:24:36,700][90460] Updated weights for policy 0, policy_version 510 (0.0006)
[2023-03-03 15:24:37,933][90460] Updated weights for policy 0, policy_version 520 (0.0006)
[2023-03-03 15:24:39,218][90460] Updated weights for policy 0, policy_version 530 (0.0006)
[2023-03-03 15:24:39,989][90258] Fps is (10 sec: 33591.6, 60 sec: 33655.4, 300 sec: 33713.2). Total num frames: 2195456. Throughput: 0: 8403.8. Samples: 541734. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-03-03 15:24:39,990][90258] Avg episode reward: [(0, '15.053')]
[2023-03-03 15:24:39,991][90447] Saving new best policy, reward=15.053!
[2023-03-03 15:24:40,436][90460] Updated weights for policy 0, policy_version 540 (0.0006)
[2023-03-03 15:24:41,673][90460] Updated weights for policy 0, policy_version 550 (0.0006)
[2023-03-03 15:24:42,888][90460] Updated weights for policy 0, policy_version 560 (0.0006)
[2023-03-03 15:24:44,131][90460] Updated weights for policy 0, policy_version 570 (0.0006)
[2023-03-03 15:24:44,989][90258] Fps is (10 sec: 33587.1, 60 sec: 33587.2, 300 sec: 33704.2). Total num frames: 2363392. Throughput: 0: 8422.9. Samples: 566624. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-03-03 15:24:44,990][90258] Avg episode reward: [(0, '17.175')]
[2023-03-03 15:24:44,993][90447] Saving new best policy, reward=17.175!
[2023-03-03 15:24:45,312][90460] Updated weights for policy 0, policy_version 580 (0.0006)
[2023-03-03 15:24:46,519][90460] Updated weights for policy 0, policy_version 590 (0.0006)
[2023-03-03 15:24:47,733][90460] Updated weights for policy 0, policy_version 600 (0.0006)
[2023-03-03 15:24:48,917][90460] Updated weights for policy 0, policy_version 610 (0.0006)
[2023-03-03 15:24:49,989][90258] Fps is (10 sec: 33587.0, 60 sec: 33587.2, 300 sec: 33696.4). Total num frames: 2531328. Throughput: 0: 8379.3. Samples: 617380. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-03-03 15:24:49,990][90258] Avg episode reward: [(0, '20.485')]
[2023-03-03 15:24:49,991][90447] Saving new best policy, reward=20.485!
[2023-03-03 15:24:50,119][90460] Updated weights for policy 0, policy_version 620 (0.0006)
[2023-03-03 15:24:51,284][90460] Updated weights for policy 0, policy_version 630 (0.0006)
[2023-03-03 15:24:52,492][90460] Updated weights for policy 0, policy_version 640 (0.0006)
[2023-03-03 15:24:53,765][90460] Updated weights for policy 0, policy_version 650 (0.0006)
[2023-03-03 15:24:54,968][90460] Updated weights for policy 0, policy_version 660 (0.0006)
[2023-03-03 15:24:54,989][90258] Fps is (10 sec: 33996.8, 60 sec: 33723.8, 300 sec: 33740.8). Total num frames: 2703360. Throughput: 0: 8393.2. Samples: 668282. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-03-03 15:24:54,990][90258] Avg episode reward: [(0, '20.297')]
[2023-03-03 15:24:56,181][90460] Updated weights for policy 0, policy_version 670 (0.0006)
[2023-03-03 15:24:57,477][90460] Updated weights for policy 0, policy_version 680 (0.0006)
[2023-03-03 15:24:58,661][90460] Updated weights for policy 0, policy_version 690 (0.0006)
[2023-03-03 15:24:59,900][90460] Updated weights for policy 0, policy_version 700 (0.0006)
[2023-03-03 15:24:59,989][90258] Fps is (10 sec: 33587.3, 60 sec: 33587.1, 300 sec: 33683.5). Total num frames: 2867200. Throughput: 0: 8394.3. Samples: 693224. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-03-03 15:24:59,990][90258] Avg episode reward: [(0, '19.129')]
[2023-03-03 15:25:01,130][90460] Updated weights for policy 0, policy_version 710 (0.0006)
[2023-03-03 15:25:02,368][90460] Updated weights for policy 0, policy_version 720 (0.0006)
[2023-03-03 15:25:03,551][90460] Updated weights for policy 0, policy_version 730 (0.0006)
[2023-03-03 15:25:04,822][90460] Updated weights for policy 0, policy_version 740 (0.0006)
[2023-03-03 15:25:04,989][90258] Fps is (10 sec: 33177.7, 60 sec: 33519.0, 300 sec: 33678.2). Total num frames: 3035136. Throughput: 0: 8427.6. Samples: 743382. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-03-03 15:25:04,990][90258] Avg episode reward: [(0, '22.414')]
[2023-03-03 15:25:04,993][90447] Saving new best policy, reward=22.414!
[2023-03-03 15:25:06,097][90460] Updated weights for policy 0, policy_version 750 (0.0006)
[2023-03-03 15:25:07,366][90460] Updated weights for policy 0, policy_version 760 (0.0006)
[2023-03-03 15:25:08,606][90460] Updated weights for policy 0, policy_version 770 (0.0007)
[2023-03-03 15:25:09,895][90460] Updated weights for policy 0, policy_version 780 (0.0006)
[2023-03-03 15:25:09,989][90258] Fps is (10 sec: 32768.2, 60 sec: 33450.7, 300 sec: 33587.2). Total num frames: 3194880. Throughput: 0: 8400.0. Samples: 792104. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-03-03 15:25:09,990][90258] Avg episode reward: [(0, '20.125')]
[2023-03-03 15:25:11,149][90460] Updated weights for policy 0, policy_version 790 (0.0006)
[2023-03-03 15:25:12,405][90460] Updated weights for policy 0, policy_version 800 (0.0006)
[2023-03-03 15:25:13,689][90460] Updated weights for policy 0, policy_version 810 (0.0006)
[2023-03-03 15:25:14,965][90460] Updated weights for policy 0, policy_version 820 (0.0006)
[2023-03-03 15:25:14,989][90258] Fps is (10 sec: 32358.4, 60 sec: 33519.0, 300 sec: 33546.2). Total num frames: 3358720. Throughput: 0: 8377.4. Samples: 816758. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:25:14,990][90258] Avg episode reward: [(0, '22.716')]
[2023-03-03 15:25:14,993][90447] Saving new best policy, reward=22.716!
[2023-03-03 15:25:16,264][90460] Updated weights for policy 0, policy_version 830 (0.0006)
[2023-03-03 15:25:17,460][90460] Updated weights for policy 0, policy_version 840 (0.0006)
[2023-03-03 15:25:18,669][90460] Updated weights for policy 0, policy_version 850 (0.0006)
[2023-03-03 15:25:19,904][90460] Updated weights for policy 0, policy_version 860 (0.0006)
[2023-03-03 15:25:19,989][90258] Fps is (10 sec: 32767.8, 60 sec: 33382.4, 300 sec: 33509.2). Total num frames: 3522560. Throughput: 0: 8305.5. Samples: 865578. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:25:19,990][90258] Avg episode reward: [(0, '24.941')]
[2023-03-03 15:25:19,991][90447] Saving new best policy, reward=24.941!
[2023-03-03 15:25:21,126][90460] Updated weights for policy 0, policy_version 870 (0.0006)
[2023-03-03 15:25:22,349][90460] Updated weights for policy 0, policy_version 880 (0.0006)
[2023-03-03 15:25:23,577][90460] Updated weights for policy 0, policy_version 890 (0.0006)
[2023-03-03 15:25:24,845][90460] Updated weights for policy 0, policy_version 900 (0.0006)
[2023-03-03 15:25:24,989][90258] Fps is (10 sec: 33177.5, 60 sec: 33450.7, 300 sec: 33512.7). Total num frames: 3690496. Throughput: 0: 8308.0. Samples: 915594. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-03-03 15:25:24,990][90258] Avg episode reward: [(0, '23.809')]
[2023-03-03 15:25:24,993][90447] Saving /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000901_3690496.pth...
[2023-03-03 15:25:26,107][90460] Updated weights for policy 0, policy_version 910 (0.0007)
[2023-03-03 15:25:27,363][90460] Updated weights for policy 0, policy_version 920 (0.0006)
[2023-03-03 15:25:28,556][90460] Updated weights for policy 0, policy_version 930 (0.0006)
[2023-03-03 15:25:29,810][90460] Updated weights for policy 0, policy_version 940 (0.0006)
[2023-03-03 15:25:29,989][90258] Fps is (10 sec: 33177.7, 60 sec: 33246.6, 300 sec: 33480.3). Total num frames: 3854336. Throughput: 0: 8300.2. Samples: 940134. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-03-03 15:25:29,990][90258] Avg episode reward: [(0, '24.056')]
[2023-03-03 15:25:31,074][90460] Updated weights for policy 0, policy_version 950 (0.0006)
[2023-03-03 15:25:32,337][90460] Updated weights for policy 0, policy_version 960 (0.0006)
[2023-03-03 15:25:33,597][90460] Updated weights for policy 0, policy_version 970 (0.0006)
[2023-03-03 15:25:34,647][90447] Stopping Batcher_0...
[2023-03-03 15:25:34,648][90447] Loop batcher_evt_loop terminating...
[2023-03-03 15:25:34,648][90447] Saving /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-03-03 15:25:34,647][90258] Component Batcher_0 stopped!
[2023-03-03 15:25:34,655][90465] Stopping RolloutWorker_w4...
[2023-03-03 15:25:34,656][90462] Stopping RolloutWorker_w0...
[2023-03-03 15:25:34,656][90465] Loop rollout_proc4_evt_loop terminating...
[2023-03-03 15:25:34,656][90462] Loop rollout_proc0_evt_loop terminating...
[2023-03-03 15:25:34,656][90464] Stopping RolloutWorker_w2...
[2023-03-03 15:25:34,655][90258] Component RolloutWorker_w4 stopped!
[2023-03-03 15:25:34,656][90463] Stopping RolloutWorker_w3...
[2023-03-03 15:25:34,656][90463] Loop rollout_proc3_evt_loop terminating...
[2023-03-03 15:25:34,656][90464] Loop rollout_proc2_evt_loop terminating...
[2023-03-03 15:25:34,656][90460] Weights refcount: 2 0
[2023-03-03 15:25:34,656][90258] Component RolloutWorker_w0 stopped!
[2023-03-03 15:25:34,657][90461] Stopping RolloutWorker_w1...
[2023-03-03 15:25:34,657][90461] Loop rollout_proc1_evt_loop terminating...
[2023-03-03 15:25:34,657][90258] Component RolloutWorker_w2 stopped!
[2023-03-03 15:25:34,658][90258] Component RolloutWorker_w3 stopped!
[2023-03-03 15:25:34,658][90482] Stopping RolloutWorker_w7...
[2023-03-03 15:25:34,658][90258] Component RolloutWorker_w1 stopped!
[2023-03-03 15:25:34,659][90482] Loop rollout_proc7_evt_loop terminating...
[2023-03-03 15:25:34,659][90466] Stopping RolloutWorker_w5...
[2023-03-03 15:25:34,659][90466] Loop rollout_proc5_evt_loop terminating...
[2023-03-03 15:25:34,659][90258] Component RolloutWorker_w7 stopped!
[2023-03-03 15:25:34,659][90258] Component RolloutWorker_w5 stopped!
[2023-03-03 15:25:34,660][90460] Stopping InferenceWorker_p0-w0...
[2023-03-03 15:25:34,660][90460] Loop inference_proc0-0_evt_loop terminating...
[2023-03-03 15:25:34,660][90258] Component InferenceWorker_p0-w0 stopped!
[2023-03-03 15:25:34,676][90483] Stopping RolloutWorker_w6...
[2023-03-03 15:25:34,677][90483] Loop rollout_proc6_evt_loop terminating...
[2023-03-03 15:25:34,677][90258] Component RolloutWorker_w6 stopped!
[2023-03-03 15:25:34,714][90447] Saving new best policy, reward=25.653!
[2023-03-03 15:25:34,792][90447] Saving /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-03-03 15:25:34,874][90447] Stopping LearnerWorker_p0...
[2023-03-03 15:25:34,874][90447] Loop learner_proc0_evt_loop terminating...
[2023-03-03 15:25:34,874][90258] Component LearnerWorker_p0 stopped!
[2023-03-03 15:25:34,875][90258] Waiting for process learner_proc0 to stop...
[2023-03-03 15:25:35,212][90258] Waiting for process inference_proc0-0 to join...
[2023-03-03 15:25:35,212][90258] Waiting for process rollout_proc0 to join...
[2023-03-03 15:25:35,213][90258] Waiting for process rollout_proc1 to join...
[2023-03-03 15:25:35,213][90258] Waiting for process rollout_proc2 to join...
[2023-03-03 15:25:35,214][90258] Waiting for process rollout_proc3 to join...
[2023-03-03 15:25:35,214][90258] Waiting for process rollout_proc4 to join...
[2023-03-03 15:25:35,215][90258] Waiting for process rollout_proc5 to join...
[2023-03-03 15:25:35,215][90258] Waiting for process rollout_proc6 to join...
[2023-03-03 15:25:35,216][90258] Waiting for process rollout_proc7 to join...
[2023-03-03 15:25:35,216][90258] Batcher 0 profile tree view:
batching: 8.3033, releasing_batches: 0.0178
[2023-03-03 15:25:35,217][90258] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
wait_policy_total: 2.5839
update_model: 1.6943
weight_update: 0.0006
one_step: 0.0017
handle_policy_step: 110.3776
deserialize: 4.9021, stack: 0.5500, obs_to_device_normalize: 30.0009, forward: 42.0827, send_messages: 7.4467
prepare_outputs: 20.7199
to_cpu: 15.0518
[2023-03-03 15:25:35,217][90258] Learner 0 profile tree view:
misc: 0.0042, prepare_batch: 7.6612
train: 21.5018
epoch_init: 0.0041, minibatch_init: 0.0047, losses_postprocess: 0.2515, kl_divergence: 0.1742, after_optimizer: 8.2064
calculate_losses: 8.3142
losses_init: 0.0024, forward_head: 0.5648, bptt_initial: 6.0024, tail: 0.3384, advantages_returns: 0.1002, losses: 0.6245
bptt: 0.5717
bptt_forward_core: 0.5459
update: 4.2840
clip: 0.6168
[2023-03-03 15:25:35,217][90258] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.0913, enqueue_policy_requests: 4.6418, env_step: 61.2028, overhead: 5.1253, complete_rollouts: 0.1457
save_policy_outputs: 5.3083
split_output_tensors: 2.6432
[2023-03-03 15:25:35,217][90258] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.0903, enqueue_policy_requests: 4.6051, env_step: 63.7948, overhead: 5.1927, complete_rollouts: 0.1508
save_policy_outputs: 5.3090
split_output_tensors: 2.6476
[2023-03-03 15:25:35,218][90258] Loop Runner_EvtLoop terminating...
[2023-03-03 15:25:35,218][90258] Runner profile tree view:
main_loop: 129.0154
[2023-03-03 15:25:35,218][90258] Collected {0: 4005888}, FPS: 31049.7
[2023-03-03 15:25:41,834][90258] Loading existing experiment configuration from /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/config.json
[2023-03-03 15:25:41,834][90258] Overriding arg 'num_workers' with value 1 passed from command line
[2023-03-03 15:25:41,835][90258] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-03-03 15:25:41,835][90258] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-03-03 15:25:41,835][90258] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-03-03 15:25:41,836][90258] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-03-03 15:25:41,836][90258] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2023-03-03 15:25:41,836][90258] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-03-03 15:25:41,837][90258] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2023-03-03 15:25:41,837][90258] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2023-03-03 15:25:41,837][90258] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-03-03 15:25:41,838][90258] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-03-03 15:25:41,838][90258] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-03-03 15:25:41,838][90258] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-03-03 15:25:41,838][90258] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-03-03 15:25:41,848][90258] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-03-03 15:25:41,849][90258] RunningMeanStd input shape: (3, 72, 128)
[2023-03-03 15:25:41,850][90258] RunningMeanStd input shape: (1,)
[2023-03-03 15:25:41,858][90258] ConvEncoder: input_channels=3
[2023-03-03 15:25:41,931][90258] Conv encoder output size: 512
[2023-03-03 15:25:41,932][90258] Policy head output size: 512
[2023-03-03 15:25:44,781][90258] Loading state from checkpoint /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-03-03 15:25:45,080][90258] Num frames 100...
[2023-03-03 15:25:45,129][90258] Num frames 200...
[2023-03-03 15:25:45,181][90258] Num frames 300...
[2023-03-03 15:25:45,247][90258] Num frames 400...
[2023-03-03 15:25:45,300][90258] Num frames 500...
[2023-03-03 15:25:45,351][90258] Num frames 600...
[2023-03-03 15:25:45,401][90258] Num frames 700...
[2023-03-03 15:25:45,452][90258] Num frames 800...
[2023-03-03 15:25:45,504][90258] Num frames 900...
[2023-03-03 15:25:45,554][90258] Num frames 1000...
[2023-03-03 15:25:45,603][90258] Num frames 1100...
[2023-03-03 15:25:45,654][90258] Num frames 1200...
[2023-03-03 15:25:45,704][90258] Num frames 1300...
[2023-03-03 15:25:45,756][90258] Num frames 1400...
[2023-03-03 15:25:45,830][90258] Avg episode rewards: #0: 36.420, true rewards: #0: 14.420
[2023-03-03 15:25:45,831][90258] Avg episode reward: 36.420, avg true_objective: 14.420
[2023-03-03 15:25:45,865][90258] Num frames 1500...
[2023-03-03 15:25:45,921][90258] Num frames 1600...
[2023-03-03 15:25:45,974][90258] Num frames 1700...
[2023-03-03 15:25:46,027][90258] Num frames 1800...
[2023-03-03 15:25:46,079][90258] Num frames 1900...
[2023-03-03 15:25:46,134][90258] Avg episode rewards: #0: 23.025, true rewards: #0: 9.525
[2023-03-03 15:25:46,135][90258] Avg episode reward: 23.025, avg true_objective: 9.525
[2023-03-03 15:25:46,184][90258] Num frames 2000...
[2023-03-03 15:25:46,235][90258] Num frames 2100...
[2023-03-03 15:25:46,285][90258] Num frames 2200...
[2023-03-03 15:25:46,334][90258] Num frames 2300...
[2023-03-03 15:25:46,414][90258] Avg episode rewards: #0: 18.177, true rewards: #0: 7.843
[2023-03-03 15:25:46,416][90258] Avg episode reward: 18.177, avg true_objective: 7.843
[2023-03-03 15:25:46,458][90258] Num frames 2400...
[2023-03-03 15:25:46,508][90258] Num frames 2500...
[2023-03-03 15:25:46,558][90258] Num frames 2600...
[2023-03-03 15:25:46,608][90258] Num frames 2700...
[2023-03-03 15:25:46,658][90258] Num frames 2800...
[2023-03-03 15:25:46,709][90258] Num frames 2900...
[2023-03-03 15:25:46,776][90258] Avg episode rewards: #0: 16.073, true rewards: #0: 7.322
[2023-03-03 15:25:46,778][90258] Avg episode reward: 16.073, avg true_objective: 7.322
[2023-03-03 15:25:46,835][90258] Num frames 3000...
[2023-03-03 15:25:46,898][90258] Num frames 3100...
[2023-03-03 15:25:46,961][90258] Num frames 3200...
[2023-03-03 15:25:47,033][90258] Num frames 3300...
[2023-03-03 15:25:47,088][90258] Num frames 3400...
[2023-03-03 15:25:47,140][90258] Num frames 3500...
[2023-03-03 15:25:47,195][90258] Num frames 3600...
[2023-03-03 15:25:47,247][90258] Num frames 3700...
[2023-03-03 15:25:47,298][90258] Num frames 3800...
[2023-03-03 15:25:47,350][90258] Num frames 3900...
[2023-03-03 15:25:47,401][90258] Num frames 4000...
[2023-03-03 15:25:47,450][90258] Num frames 4100...
[2023-03-03 15:25:47,500][90258] Num frames 4200...
[2023-03-03 15:25:47,589][90258] Avg episode rewards: #0: 20.546, true rewards: #0: 8.546
[2023-03-03 15:25:47,591][90258] Avg episode reward: 20.546, avg true_objective: 8.546
[2023-03-03 15:25:47,622][90258] Num frames 4300...
[2023-03-03 15:25:47,672][90258] Num frames 4400...
[2023-03-03 15:25:47,722][90258] Num frames 4500...
[2023-03-03 15:25:47,772][90258] Num frames 4600...
[2023-03-03 15:25:47,829][90258] Num frames 4700...
[2023-03-03 15:25:47,887][90258] Num frames 4800...
[2023-03-03 15:25:47,985][90258] Avg episode rewards: #0: 19.128, true rewards: #0: 8.128
[2023-03-03 15:25:47,986][90258] Avg episode reward: 19.128, avg true_objective: 8.128
[2023-03-03 15:25:48,001][90258] Num frames 4900...
[2023-03-03 15:25:48,054][90258] Num frames 5000...
[2023-03-03 15:25:48,103][90258] Num frames 5100...
[2023-03-03 15:25:48,154][90258] Num frames 5200...
[2023-03-03 15:25:48,207][90258] Num frames 5300...
[2023-03-03 15:25:48,261][90258] Num frames 5400...
[2023-03-03 15:25:48,338][90258] Avg episode rewards: #0: 17.926, true rewards: #0: 7.783
[2023-03-03 15:25:48,340][90258] Avg episode reward: 17.926, avg true_objective: 7.783
[2023-03-03 15:25:48,387][90258] Num frames 5500...
[2023-03-03 15:25:48,442][90258] Num frames 5600...
[2023-03-03 15:25:48,492][90258] Num frames 5700...
[2023-03-03 15:25:48,542][90258] Num frames 5800...
[2023-03-03 15:25:48,599][90258] Num frames 5900...
[2023-03-03 15:25:48,650][90258] Num frames 6000...
[2023-03-03 15:25:48,702][90258] Num frames 6100...
[2023-03-03 15:25:48,766][90258] Num frames 6200...
[2023-03-03 15:25:48,821][90258] Num frames 6300...
[2023-03-03 15:25:48,873][90258] Num frames 6400...
[2023-03-03 15:25:48,925][90258] Num frames 6500...
[2023-03-03 15:25:48,976][90258] Num frames 6600...
[2023-03-03 15:25:49,029][90258] Num frames 6700...
[2023-03-03 15:25:49,082][90258] Num frames 6800...
[2023-03-03 15:25:49,142][90258] Avg episode rewards: #0: 19.895, true rewards: #0: 8.520
[2023-03-03 15:25:49,144][90258] Avg episode reward: 19.895, avg true_objective: 8.520
[2023-03-03 15:25:49,206][90258] Num frames 6900...
[2023-03-03 15:25:49,260][90258] Num frames 7000...
[2023-03-03 15:25:49,314][90258] Num frames 7100...
[2023-03-03 15:25:49,368][90258] Num frames 7200...
[2023-03-03 15:25:49,421][90258] Num frames 7300...
[2023-03-03 15:25:49,476][90258] Num frames 7400...
[2023-03-03 15:25:49,533][90258] Num frames 7500...
[2023-03-03 15:25:49,586][90258] Num frames 7600...
[2023-03-03 15:25:49,638][90258] Num frames 7700...
[2023-03-03 15:25:49,690][90258] Num frames 7800...
[2023-03-03 15:25:49,743][90258] Num frames 7900...
[2023-03-03 15:25:49,797][90258] Num frames 8000...
[2023-03-03 15:25:49,850][90258] Num frames 8100...
[2023-03-03 15:25:49,950][90258] Avg episode rewards: #0: 21.102, true rewards: #0: 9.102
[2023-03-03 15:25:49,951][90258] Avg episode reward: 21.102, avg true_objective: 9.102
[2023-03-03 15:25:49,969][90258] Num frames 8200...
[2023-03-03 15:25:50,035][90258] Num frames 8300...
[2023-03-03 15:25:50,092][90258] Num frames 8400...
[2023-03-03 15:25:50,144][90258] Num frames 8500...
[2023-03-03 15:25:50,198][90258] Num frames 8600...
[2023-03-03 15:25:50,260][90258] Num frames 8700...
[2023-03-03 15:25:50,313][90258] Num frames 8800...
[2023-03-03 15:25:50,365][90258] Num frames 8900...
[2023-03-03 15:25:50,420][90258] Num frames 9000...
[2023-03-03 15:25:50,481][90258] Num frames 9100...
[2023-03-03 15:25:50,538][90258] Num frames 9200...
[2023-03-03 15:25:50,595][90258] Num frames 9300...
[2023-03-03 15:25:50,650][90258] Num frames 9400...
[2023-03-03 15:25:50,702][90258] Num frames 9500...
[2023-03-03 15:25:50,753][90258] Num frames 9600...
[2023-03-03 15:25:50,805][90258] Num frames 9700...
[2023-03-03 15:25:50,858][90258] Num frames 9800...
[2023-03-03 15:25:50,913][90258] Num frames 9900...
[2023-03-03 15:25:50,966][90258] Num frames 10000...
[2023-03-03 15:25:51,041][90258] Avg episode rewards: #0: 23.542, true rewards: #0: 10.042
[2023-03-03 15:25:51,042][90258] Avg episode reward: 23.542, avg true_objective: 10.042
[2023-03-03 15:26:04,458][90258] Replay video saved to /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/replay.mp4!
[2023-03-03 15:27:26,535][90258] Loading existing experiment configuration from /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/config.json
[2023-03-03 15:27:26,535][90258] Overriding arg 'num_workers' with value 1 passed from command line
[2023-03-03 15:27:26,536][90258] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-03-03 15:27:26,536][90258] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-03-03 15:27:26,537][90258] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-03-03 15:27:26,537][90258] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-03-03 15:27:26,537][90258] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-03-03 15:27:26,538][90258] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-03-03 15:27:26,538][90258] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-03-03 15:27:26,538][90258] Adding new argument 'hf_repository'='CloXD/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-03-03 15:27:26,539][90258] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-03-03 15:27:26,539][90258] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-03-03 15:27:26,540][90258] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-03-03 15:27:26,540][90258] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-03-03 15:27:26,540][90258] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-03-03 15:27:26,549][90258] RunningMeanStd input shape: (3, 72, 128)
[2023-03-03 15:27:26,550][90258] RunningMeanStd input shape: (1,)
[2023-03-03 15:27:26,557][90258] ConvEncoder: input_channels=3
[2023-03-03 15:27:26,578][90258] Conv encoder output size: 512
[2023-03-03 15:27:26,579][90258] Policy head output size: 512
[2023-03-03 15:27:26,601][90258] Loading state from checkpoint /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-03-03 15:27:26,887][90258] Num frames 100...
[2023-03-03 15:27:26,940][90258] Num frames 200...
[2023-03-03 15:27:26,992][90258] Num frames 300...
[2023-03-03 15:27:27,044][90258] Num frames 400...
[2023-03-03 15:27:27,099][90258] Num frames 500...
[2023-03-03 15:27:27,151][90258] Num frames 600...
[2023-03-03 15:27:27,203][90258] Num frames 700...
[2023-03-03 15:27:27,305][90258] Avg episode rewards: #0: 17.940, true rewards: #0: 7.940
[2023-03-03 15:27:27,305][90258] Avg episode reward: 17.940, avg true_objective: 7.940
[2023-03-03 15:27:27,310][90258] Num frames 800...
[2023-03-03 15:27:27,362][90258] Num frames 900...
[2023-03-03 15:27:27,418][90258] Num frames 1000...
[2023-03-03 15:27:27,468][90258] Num frames 1100...
[2023-03-03 15:27:27,518][90258] Num frames 1200...
[2023-03-03 15:27:27,570][90258] Num frames 1300...
[2023-03-03 15:27:27,622][90258] Num frames 1400...
[2023-03-03 15:27:27,677][90258] Num frames 1500...
[2023-03-03 15:27:27,730][90258] Num frames 1600...
[2023-03-03 15:27:27,782][90258] Num frames 1700...
[2023-03-03 15:27:27,833][90258] Num frames 1800...
[2023-03-03 15:27:27,885][90258] Num frames 1900...
[2023-03-03 15:27:27,935][90258] Num frames 2000...
[2023-03-03 15:27:27,993][90258] Avg episode rewards: #0: 21.550, true rewards: #0: 10.050
[2023-03-03 15:27:27,994][90258] Avg episode reward: 21.550, avg true_objective: 10.050
[2023-03-03 15:27:28,060][90258] Num frames 2100...
[2023-03-03 15:27:28,109][90258] Num frames 2200...
[2023-03-03 15:27:28,160][90258] Num frames 2300...
[2023-03-03 15:27:28,210][90258] Num frames 2400...
[2023-03-03 15:27:28,265][90258] Num frames 2500...
[2023-03-03 15:27:28,314][90258] Num frames 2600...
[2023-03-03 15:27:28,367][90258] Num frames 2700...
[2023-03-03 15:27:28,417][90258] Num frames 2800...
[2023-03-03 15:27:28,508][90258] Avg episode rewards: #0: 20.580, true rewards: #0: 9.580
[2023-03-03 15:27:28,510][90258] Avg episode reward: 20.580, avg true_objective: 9.580
[2023-03-03 15:27:28,541][90258] Num frames 2900...
[2023-03-03 15:27:28,594][90258] Num frames 3000...
[2023-03-03 15:27:28,646][90258] Num frames 3100...
[2023-03-03 15:27:28,697][90258] Num frames 3200...
[2023-03-03 15:27:28,766][90258] Num frames 3300...
[2023-03-03 15:27:28,816][90258] Num frames 3400...
[2023-03-03 15:27:28,870][90258] Num frames 3500...
[2023-03-03 15:27:28,925][90258] Num frames 3600...
[2023-03-03 15:27:28,977][90258] Num frames 3700...
[2023-03-03 15:27:29,030][90258] Num frames 3800...
[2023-03-03 15:27:29,082][90258] Num frames 3900...
[2023-03-03 15:27:29,136][90258] Num frames 4000...
[2023-03-03 15:27:29,190][90258] Num frames 4100...
[2023-03-03 15:27:29,241][90258] Num frames 4200...
[2023-03-03 15:27:29,292][90258] Num frames 4300...
[2023-03-03 15:27:29,344][90258] Num frames 4400...
[2023-03-03 15:27:29,396][90258] Num frames 4500...
[2023-03-03 15:27:29,447][90258] Num frames 4600...
[2023-03-03 15:27:29,499][90258] Num frames 4700...
[2023-03-03 15:27:29,551][90258] Num frames 4800...
[2023-03-03 15:27:29,606][90258] Num frames 4900...
[2023-03-03 15:27:29,697][90258] Avg episode rewards: #0: 30.935, true rewards: #0: 12.435
[2023-03-03 15:27:29,698][90258] Avg episode reward: 30.935, avg true_objective: 12.435
[2023-03-03 15:27:29,714][90258] Num frames 5000...
[2023-03-03 15:27:29,766][90258] Num frames 5100...
[2023-03-03 15:27:29,816][90258] Num frames 5200...
[2023-03-03 15:27:29,870][90258] Num frames 5300...
[2023-03-03 15:27:29,919][90258] Num frames 5400...
[2023-03-03 15:27:29,971][90258] Num frames 5500...
[2023-03-03 15:27:30,023][90258] Num frames 5600...
[2023-03-03 15:27:30,072][90258] Num frames 5700...
[2023-03-03 15:27:30,163][90258] Avg episode rewards: #0: 28.548, true rewards: #0: 11.548
[2023-03-03 15:27:30,165][90258] Avg episode reward: 28.548, avg true_objective: 11.548
[2023-03-03 15:27:30,199][90258] Num frames 5800...
[2023-03-03 15:27:30,260][90258] Num frames 5900...
[2023-03-03 15:27:30,317][90258] Num frames 6000...
[2023-03-03 15:27:30,371][90258] Num frames 6100...
[2023-03-03 15:27:30,422][90258] Num frames 6200...
[2023-03-03 15:27:30,473][90258] Num frames 6300...
[2023-03-03 15:27:30,525][90258] Num frames 6400...
[2023-03-03 15:27:30,578][90258] Num frames 6500...
[2023-03-03 15:27:30,633][90258] Avg episode rewards: #0: 26.172, true rewards: #0: 10.838
[2023-03-03 15:27:30,634][90258] Avg episode reward: 26.172, avg true_objective: 10.838
[2023-03-03 15:27:30,691][90258] Num frames 6600...
[2023-03-03 15:27:30,741][90258] Num frames 6700...
[2023-03-03 15:27:30,792][90258] Num frames 6800...
[2023-03-03 15:27:30,844][90258] Num frames 6900...
[2023-03-03 15:27:30,895][90258] Num frames 7000...
[2023-03-03 15:27:30,947][90258] Num frames 7100...
[2023-03-03 15:27:30,998][90258] Num frames 7200...
[2023-03-03 15:27:31,071][90258] Avg episode rewards: #0: 24.770, true rewards: #0: 10.341
[2023-03-03 15:27:31,072][90258] Avg episode reward: 24.770, avg true_objective: 10.341
[2023-03-03 15:27:31,106][90258] Num frames 7300...
[2023-03-03 15:27:31,157][90258] Num frames 7400...
[2023-03-03 15:27:31,208][90258] Num frames 7500...
[2023-03-03 15:27:31,262][90258] Num frames 7600...
[2023-03-03 15:27:31,316][90258] Num frames 7700...
[2023-03-03 15:27:31,369][90258] Num frames 7800...
[2023-03-03 15:27:31,416][90258] Num frames 7900...
[2023-03-03 15:27:31,464][90258] Num frames 8000...
[2023-03-03 15:27:31,513][90258] Num frames 8100...
[2023-03-03 15:27:31,614][90258] Avg episode rewards: #0: 24.124, true rewards: #0: 10.249
[2023-03-03 15:27:31,616][90258] Avg episode reward: 24.124, avg true_objective: 10.249
[2023-03-03 15:27:31,619][90258] Num frames 8200...
[2023-03-03 15:27:31,690][90258] Num frames 8300...
[2023-03-03 15:27:31,738][90258] Num frames 8400...
[2023-03-03 15:27:31,787][90258] Num frames 8500...
[2023-03-03 15:27:31,836][90258] Num frames 8600...
[2023-03-03 15:27:31,887][90258] Num frames 8700...
[2023-03-03 15:27:31,935][90258] Num frames 8800...
[2023-03-03 15:27:31,983][90258] Num frames 8900...
[2023-03-03 15:27:32,035][90258] Num frames 9000...
[2023-03-03 15:27:32,085][90258] Num frames 9100...
[2023-03-03 15:27:32,136][90258] Num frames 9200...
[2023-03-03 15:27:32,185][90258] Num frames 9300...
[2023-03-03 15:27:32,252][90258] Num frames 9400...
[2023-03-03 15:27:32,303][90258] Num frames 9500...
[2023-03-03 15:27:32,355][90258] Num frames 9600...
[2023-03-03 15:27:32,405][90258] Num frames 9700...
[2023-03-03 15:27:32,456][90258] Num frames 9800...
[2023-03-03 15:27:32,508][90258] Num frames 9900...
[2023-03-03 15:27:32,559][90258] Num frames 10000...
[2023-03-03 15:27:32,610][90258] Num frames 10100...
[2023-03-03 15:27:32,660][90258] Num frames 10200...
[2023-03-03 15:27:32,764][90258] Avg episode rewards: #0: 27.665, true rewards: #0: 11.443
[2023-03-03 15:27:32,765][90258] Avg episode reward: 27.665, avg true_objective: 11.443
[2023-03-03 15:27:32,767][90258] Num frames 10300...
[2023-03-03 15:27:32,821][90258] Num frames 10400...
[2023-03-03 15:27:32,875][90258] Num frames 10500...
[2023-03-03 15:27:32,932][90258] Num frames 10600...
[2023-03-03 15:27:32,988][90258] Num frames 10700...
[2023-03-03 15:27:33,042][90258] Num frames 10800...
[2023-03-03 15:27:33,096][90258] Num frames 10900...
[2023-03-03 15:27:33,150][90258] Num frames 11000...
[2023-03-03 15:27:33,238][90258] Avg episode rewards: #0: 26.567, true rewards: #0: 11.067
[2023-03-03 15:27:33,239][90258] Avg episode reward: 26.567, avg true_objective: 11.067
[2023-03-03 15:27:47,330][90258] Replay video saved to /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/replay.mp4!
[2023-03-03 15:29:31,288][90258] Loading existing experiment configuration from /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/config.json
[2023-03-03 15:29:31,289][90258] Overriding arg 'num_workers' with value 1 passed from command line
[2023-03-03 15:29:31,289][90258] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-03-03 15:29:31,290][90258] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-03-03 15:29:31,290][90258] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-03-03 15:29:31,290][90258] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-03-03 15:29:31,291][90258] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-03-03 15:29:31,291][90258] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-03-03 15:29:31,291][90258] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-03-03 15:29:31,292][90258] Adding new argument 'hf_repository'='CloXD/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-03-03 15:29:31,292][90258] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-03-03 15:29:31,292][90258] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-03-03 15:29:31,292][90258] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-03-03 15:29:31,292][90258] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-03-03 15:29:31,293][90258] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-03-03 15:29:31,302][90258] RunningMeanStd input shape: (3, 72, 128)
[2023-03-03 15:29:31,303][90258] RunningMeanStd input shape: (1,)
[2023-03-03 15:29:31,309][90258] ConvEncoder: input_channels=3
[2023-03-03 15:29:31,332][90258] Conv encoder output size: 512
[2023-03-03 15:29:31,332][90258] Policy head output size: 512
[2023-03-03 15:29:31,367][90258] Loading state from checkpoint /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-03-03 15:29:31,655][90258] Num frames 100...
[2023-03-03 15:29:31,706][90258] Num frames 200...
[2023-03-03 15:29:31,757][90258] Num frames 300...
[2023-03-03 15:29:31,806][90258] Num frames 400...
[2023-03-03 15:29:31,859][90258] Num frames 500...
[2023-03-03 15:29:31,911][90258] Num frames 600...
[2023-03-03 15:29:31,962][90258] Num frames 700...
[2023-03-03 15:29:32,019][90258] Num frames 800...
[2023-03-03 15:29:32,078][90258] Num frames 900...
[2023-03-03 15:29:32,131][90258] Num frames 1000...
[2023-03-03 15:29:32,185][90258] Num frames 1100...
[2023-03-03 15:29:32,240][90258] Num frames 1200...
[2023-03-03 15:29:32,293][90258] Num frames 1300...
[2023-03-03 15:29:32,345][90258] Num frames 1400...
[2023-03-03 15:29:32,396][90258] Num frames 1500...
[2023-03-03 15:29:32,450][90258] Num frames 1600...
[2023-03-03 15:29:32,500][90258] Num frames 1700...
[2023-03-03 15:29:32,552][90258] Num frames 1800...
[2023-03-03 15:29:32,616][90258] Avg episode rewards: #0: 45.240, true rewards: #0: 18.240
[2023-03-03 15:29:32,617][90258] Avg episode reward: 45.240, avg true_objective: 18.240
[2023-03-03 15:29:32,664][90258] Num frames 1900...
[2023-03-03 15:29:32,717][90258] Num frames 2000...
[2023-03-03 15:29:32,770][90258] Num frames 2100...
[2023-03-03 15:29:32,829][90258] Num frames 2200...
[2023-03-03 15:29:32,893][90258] Num frames 2300...
[2023-03-03 15:29:32,948][90258] Num frames 2400...
[2023-03-03 15:29:33,000][90258] Num frames 2500...
[2023-03-03 15:29:33,052][90258] Num frames 2600...
[2023-03-03 15:29:33,105][90258] Num frames 2700...
[2023-03-03 15:29:33,157][90258] Num frames 2800...
[2023-03-03 15:29:33,209][90258] Num frames 2900...
[2023-03-03 15:29:33,261][90258] Num frames 3000...
[2023-03-03 15:29:33,313][90258] Num frames 3100...
[2023-03-03 15:29:33,364][90258] Num frames 3200...
[2023-03-03 15:29:33,416][90258] Num frames 3300...
[2023-03-03 15:29:33,488][90258] Avg episode rewards: #0: 42.695, true rewards: #0: 16.695
[2023-03-03 15:29:33,489][90258] Avg episode reward: 42.695, avg true_objective: 16.695
[2023-03-03 15:29:33,524][90258] Num frames 3400...
[2023-03-03 15:29:33,574][90258] Num frames 3500...
[2023-03-03 15:29:33,625][90258] Num frames 3600...
[2023-03-03 15:29:33,677][90258] Num frames 3700...
[2023-03-03 15:29:33,729][90258] Num frames 3800...
[2023-03-03 15:29:33,778][90258] Num frames 3900...
[2023-03-03 15:29:33,829][90258] Num frames 4000...
[2023-03-03 15:29:33,879][90258] Num frames 4100...
[2023-03-03 15:29:33,930][90258] Num frames 4200...
[2023-03-03 15:29:33,981][90258] Num frames 4300...
[2023-03-03 15:29:34,065][90258] Avg episode rewards: #0: 36.543, true rewards: #0: 14.543
[2023-03-03 15:29:34,067][90258] Avg episode reward: 36.543, avg true_objective: 14.543
[2023-03-03 15:29:34,110][90258] Num frames 4400...
[2023-03-03 15:29:34,160][90258] Num frames 4500...
[2023-03-03 15:29:34,211][90258] Num frames 4600...
[2023-03-03 15:29:34,261][90258] Num frames 4700...
[2023-03-03 15:29:34,311][90258] Num frames 4800...
[2023-03-03 15:29:34,361][90258] Num frames 4900...
[2023-03-03 15:29:34,412][90258] Num frames 5000...
[2023-03-03 15:29:34,461][90258] Num frames 5100...
[2023-03-03 15:29:34,511][90258] Num frames 5200...
[2023-03-03 15:29:34,563][90258] Num frames 5300...
[2023-03-03 15:29:34,612][90258] Num frames 5400...
[2023-03-03 15:29:34,662][90258] Num frames 5500...
[2023-03-03 15:29:34,712][90258] Num frames 5600...
[2023-03-03 15:29:34,762][90258] Num frames 5700...
[2023-03-03 15:29:34,810][90258] Num frames 5800...
[2023-03-03 15:29:34,860][90258] Num frames 5900...
[2023-03-03 15:29:34,910][90258] Num frames 6000...
[2023-03-03 15:29:34,959][90258] Num frames 6100...
[2023-03-03 15:29:35,010][90258] Num frames 6200...
[2023-03-03 15:29:35,059][90258] Num frames 6300...
[2023-03-03 15:29:35,109][90258] Num frames 6400...
[2023-03-03 15:29:35,194][90258] Avg episode rewards: #0: 41.157, true rewards: #0: 16.158
[2023-03-03 15:29:35,196][90258] Avg episode reward: 41.157, avg true_objective: 16.158
[2023-03-03 15:29:35,233][90258] Num frames 6500...
[2023-03-03 15:29:35,286][90258] Num frames 6600...
[2023-03-03 15:29:35,335][90258] Num frames 6700...
[2023-03-03 15:29:35,384][90258] Num frames 6800...
[2023-03-03 15:29:35,434][90258] Num frames 6900...
[2023-03-03 15:29:35,482][90258] Num frames 7000...
[2023-03-03 15:29:35,531][90258] Num frames 7100...
[2023-03-03 15:29:35,580][90258] Num frames 7200...
[2023-03-03 15:29:35,664][90258] Avg episode rewards: #0: 36.126, true rewards: #0: 14.526
[2023-03-03 15:29:35,665][90258] Avg episode reward: 36.126, avg true_objective: 14.526
[2023-03-03 15:29:35,694][90258] Num frames 7300...
[2023-03-03 15:29:35,747][90258] Num frames 7400...
[2023-03-03 15:29:35,796][90258] Num frames 7500...
[2023-03-03 15:29:35,846][90258] Num frames 7600...
[2023-03-03 15:29:35,895][90258] Num frames 7700...
[2023-03-03 15:29:35,946][90258] Num frames 7800...
[2023-03-03 15:29:35,997][90258] Num frames 7900...
[2023-03-03 15:29:36,048][90258] Num frames 8000...
[2023-03-03 15:29:36,116][90258] Avg episode rewards: #0: 32.551, true rewards: #0: 13.385
[2023-03-03 15:29:36,117][90258] Avg episode reward: 32.551, avg true_objective: 13.385
[2023-03-03 15:29:36,156][90258] Num frames 8100...
[2023-03-03 15:29:36,209][90258] Num frames 8200...
[2023-03-03 15:29:36,263][90258] Num frames 8300...
[2023-03-03 15:29:36,337][90258] Num frames 8400...
[2023-03-03 15:29:36,415][90258] Num frames 8500...
[2023-03-03 15:29:36,478][90258] Num frames 8600...
[2023-03-03 15:29:36,531][90258] Num frames 8700...
[2023-03-03 15:29:36,585][90258] Num frames 8800...
[2023-03-03 15:29:36,641][90258] Num frames 8900...
[2023-03-03 15:29:36,695][90258] Num frames 9000...
[2023-03-03 15:29:36,747][90258] Num frames 9100...
[2023-03-03 15:29:36,801][90258] Num frames 9200...
[2023-03-03 15:29:36,851][90258] Num frames 9300...
[2023-03-03 15:29:36,901][90258] Num frames 9400...
[2023-03-03 15:29:36,951][90258] Num frames 9500...
[2023-03-03 15:29:37,002][90258] Num frames 9600...
[2023-03-03 15:29:37,093][90258] Avg episode rewards: #0: 33.958, true rewards: #0: 13.816
[2023-03-03 15:29:37,094][90258] Avg episode reward: 33.958, avg true_objective: 13.816
[2023-03-03 15:29:37,114][90258] Num frames 9700...
[2023-03-03 15:29:37,166][90258] Num frames 9800...
[2023-03-03 15:29:37,220][90258] Num frames 9900...
[2023-03-03 15:29:37,273][90258] Num frames 10000...
[2023-03-03 15:29:37,327][90258] Num frames 10100...
[2023-03-03 15:29:37,379][90258] Num frames 10200...
[2023-03-03 15:29:37,433][90258] Num frames 10300...
[2023-03-03 15:29:37,487][90258] Num frames 10400...
[2023-03-03 15:29:37,536][90258] Num frames 10500...
[2023-03-03 15:29:37,590][90258] Avg episode rewards: #0: 32.004, true rewards: #0: 13.129
[2023-03-03 15:29:37,592][90258] Avg episode reward: 32.004, avg true_objective: 13.129
[2023-03-03 15:29:37,660][90258] Num frames 10600...
[2023-03-03 15:29:37,710][90258] Num frames 10700...
[2023-03-03 15:29:37,762][90258] Num frames 10800...
[2023-03-03 15:29:37,811][90258] Num frames 10900...
[2023-03-03 15:29:37,862][90258] Num frames 11000...
[2023-03-03 15:29:37,914][90258] Num frames 11100...
[2023-03-03 15:29:37,967][90258] Num frames 11200...
[2023-03-03 15:29:38,022][90258] Num frames 11300...
[2023-03-03 15:29:38,097][90258] Avg episode rewards: #0: 30.150, true rewards: #0: 12.594
[2023-03-03 15:29:38,099][90258] Avg episode reward: 30.150, avg true_objective: 12.594
[2023-03-03 15:29:38,154][90258] Num frames 11400...
[2023-03-03 15:29:38,212][90258] Num frames 11500...
[2023-03-03 15:29:38,263][90258] Num frames 11600...
[2023-03-03 15:29:38,313][90258] Num frames 11700...
[2023-03-03 15:29:38,363][90258] Num frames 11800...
[2023-03-03 15:29:38,411][90258] Num frames 11900...
[2023-03-03 15:29:38,474][90258] Num frames 12000...
[2023-03-03 15:29:38,546][90258] Num frames 12100...
[2023-03-03 15:29:38,625][90258] Avg episode rewards: #0: 28.939, true rewards: #0: 12.139
[2023-03-03 15:29:38,626][90258] Avg episode reward: 28.939, avg true_objective: 12.139
[2023-03-03 15:29:53,891][90258] Replay video saved to /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/replay.mp4!
[2023-03-03 15:32:20,498][90258] Loading existing experiment configuration from /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/config.json
[2023-03-03 15:32:20,498][90258] Overriding arg 'num_workers' with value 1 passed from command line
[2023-03-03 15:32:20,499][90258] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-03-03 15:32:20,499][90258] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-03-03 15:32:20,500][90258] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-03-03 15:32:20,500][90258] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-03-03 15:32:20,500][90258] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-03-03 15:32:20,501][90258] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-03-03 15:32:20,501][90258] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-03-03 15:32:20,501][90258] Adding new argument 'hf_repository'='CloXD/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-03-03 15:32:20,502][90258] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-03-03 15:32:20,502][90258] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-03-03 15:32:20,502][90258] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-03-03 15:32:20,503][90258] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-03-03 15:32:20,503][90258] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-03-03 15:32:20,513][90258] RunningMeanStd input shape: (3, 72, 128)
[2023-03-03 15:32:20,513][90258] RunningMeanStd input shape: (1,)
[2023-03-03 15:32:20,521][90258] ConvEncoder: input_channels=3
[2023-03-03 15:32:20,558][90258] Conv encoder output size: 512
[2023-03-03 15:32:20,559][90258] Policy head output size: 512
[2023-03-03 15:32:20,579][90258] Loading state from checkpoint /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-03-03 15:32:20,876][90258] Num frames 100...
[2023-03-03 15:32:20,935][90258] Num frames 200...
[2023-03-03 15:32:20,994][90258] Num frames 300...
[2023-03-03 15:32:21,052][90258] Num frames 400...
[2023-03-03 15:32:21,114][90258] Num frames 500...
[2023-03-03 15:32:21,167][90258] Num frames 600...
[2023-03-03 15:32:21,223][90258] Num frames 700...
[2023-03-03 15:32:21,278][90258] Num frames 800...
[2023-03-03 15:32:21,329][90258] Num frames 900...
[2023-03-03 15:32:21,379][90258] Num frames 1000...
[2023-03-03 15:32:21,427][90258] Num frames 1100...
[2023-03-03 15:32:21,477][90258] Num frames 1200...
[2023-03-03 15:32:21,529][90258] Num frames 1300...
[2023-03-03 15:32:21,578][90258] Num frames 1400...
[2023-03-03 15:32:21,634][90258] Avg episode rewards: #0: 34.080, true rewards: #0: 14.080
[2023-03-03 15:32:21,635][90258] Avg episode reward: 34.080, avg true_objective: 14.080
[2023-03-03 15:32:21,686][90258] Num frames 1500...
[2023-03-03 15:32:21,736][90258] Num frames 1600...
[2023-03-03 15:32:21,786][90258] Num frames 1700...
[2023-03-03 15:32:21,838][90258] Num frames 1800...
[2023-03-03 15:32:21,891][90258] Num frames 1900...
[2023-03-03 15:32:21,972][90258] Avg episode rewards: #0: 23.280, true rewards: #0: 9.780
[2023-03-03 15:32:21,974][90258] Avg episode reward: 23.280, avg true_objective: 9.780
[2023-03-03 15:32:22,032][90258] Num frames 2000...
[2023-03-03 15:32:22,082][90258] Num frames 2100...
[2023-03-03 15:32:22,134][90258] Num frames 2200...
[2023-03-03 15:32:22,183][90258] Num frames 2300...
[2023-03-03 15:32:22,237][90258] Num frames 2400...
[2023-03-03 15:32:22,288][90258] Num frames 2500...
[2023-03-03 15:32:22,341][90258] Num frames 2600...
[2023-03-03 15:32:22,391][90258] Num frames 2700...
[2023-03-03 15:32:22,446][90258] Num frames 2800...
[2023-03-03 15:32:22,509][90258] Num frames 2900...
[2023-03-03 15:32:22,581][90258] Num frames 3000...
[2023-03-03 15:32:22,646][90258] Num frames 3100...
[2023-03-03 15:32:22,708][90258] Num frames 3200...
[2023-03-03 15:32:22,763][90258] Avg episode rewards: #0: 26.680, true rewards: #0: 10.680
[2023-03-03 15:32:22,765][90258] Avg episode reward: 26.680, avg true_objective: 10.680
[2023-03-03 15:32:22,836][90258] Num frames 3300...
[2023-03-03 15:32:22,887][90258] Num frames 3400...
[2023-03-03 15:32:22,944][90258] Num frames 3500...
[2023-03-03 15:32:22,996][90258] Num frames 3600...
[2023-03-03 15:32:23,048][90258] Num frames 3700...
[2023-03-03 15:32:23,098][90258] Num frames 3800...
[2023-03-03 15:32:23,186][90258] Avg episode rewards: #0: 23.190, true rewards: #0: 9.690
[2023-03-03 15:32:23,187][90258] Avg episode reward: 23.190, avg true_objective: 9.690
[2023-03-03 15:32:23,203][90258] Num frames 3900...
[2023-03-03 15:32:23,254][90258] Num frames 4000...
[2023-03-03 15:32:23,305][90258] Num frames 4100...
[2023-03-03 15:32:23,355][90258] Num frames 4200...
[2023-03-03 15:32:23,406][90258] Num frames 4300...
[2023-03-03 15:32:23,455][90258] Num frames 4400...
[2023-03-03 15:32:23,506][90258] Num frames 4500...
[2023-03-03 15:32:23,555][90258] Num frames 4600...
[2023-03-03 15:32:23,610][90258] Num frames 4700...
[2023-03-03 15:32:23,661][90258] Num frames 4800...
[2023-03-03 15:32:23,710][90258] Num frames 4900...
[2023-03-03 15:32:23,767][90258] Num frames 5000...
[2023-03-03 15:32:23,860][90258] Avg episode rewards: #0: 23.936, true rewards: #0: 10.136
[2023-03-03 15:32:23,862][90258] Avg episode reward: 23.936, avg true_objective: 10.136
[2023-03-03 15:32:23,890][90258] Num frames 5100...
[2023-03-03 15:32:23,948][90258] Num frames 5200...
[2023-03-03 15:32:24,003][90258] Num frames 5300...
[2023-03-03 15:32:24,059][90258] Num frames 5400...
[2023-03-03 15:32:24,111][90258] Num frames 5500...
[2023-03-03 15:32:24,167][90258] Num frames 5600...
[2023-03-03 15:32:24,234][90258] Num frames 5700...
[2023-03-03 15:32:24,290][90258] Num frames 5800...
[2023-03-03 15:32:24,349][90258] Num frames 5900...
[2023-03-03 15:32:24,411][90258] Num frames 6000...
[2023-03-03 15:32:24,469][90258] Num frames 6100...
[2023-03-03 15:32:24,564][90258] Avg episode rewards: #0: 25.297, true rewards: #0: 10.297
[2023-03-03 15:32:24,565][90258] Avg episode reward: 25.297, avg true_objective: 10.297
[2023-03-03 15:32:24,578][90258] Num frames 6200...
[2023-03-03 15:32:24,631][90258] Num frames 6300...
[2023-03-03 15:32:24,683][90258] Num frames 6400...
[2023-03-03 15:32:24,733][90258] Num frames 6500...
[2023-03-03 15:32:24,786][90258] Num frames 6600...
[2023-03-03 15:32:24,836][90258] Num frames 6700...
[2023-03-03 15:32:24,886][90258] Num frames 6800...
[2023-03-03 15:32:24,937][90258] Num frames 6900...
[2023-03-03 15:32:24,987][90258] Num frames 7000...
[2023-03-03 15:32:25,050][90258] Avg episode rewards: #0: 24.312, true rewards: #0: 10.026
[2023-03-03 15:32:25,052][90258] Avg episode reward: 24.312, avg true_objective: 10.026
[2023-03-03 15:32:25,110][90258] Num frames 7100...
[2023-03-03 15:32:25,164][90258] Num frames 7200...
[2023-03-03 15:32:25,217][90258] Num frames 7300...
[2023-03-03 15:32:25,268][90258] Num frames 7400...
[2023-03-03 15:32:25,317][90258] Num frames 7500...
[2023-03-03 15:32:25,366][90258] Num frames 7600...
[2023-03-03 15:32:25,442][90258] Avg episode rewards: #0: 22.683, true rewards: #0: 9.557
[2023-03-03 15:32:25,443][90258] Avg episode reward: 22.683, avg true_objective: 9.557
[2023-03-03 15:32:25,474][90258] Num frames 7700...
[2023-03-03 15:32:25,529][90258] Num frames 7800...
[2023-03-03 15:32:25,583][90258] Num frames 7900...
[2023-03-03 15:32:25,636][90258] Num frames 8000...
[2023-03-03 15:32:25,687][90258] Num frames 8100...
[2023-03-03 15:32:25,736][90258] Num frames 8200...
[2023-03-03 15:32:25,786][90258] Num frames 8300...
[2023-03-03 15:32:25,834][90258] Num frames 8400...
[2023-03-03 15:32:25,886][90258] Num frames 8500...
[2023-03-03 15:32:25,936][90258] Num frames 8600...
[2023-03-03 15:32:25,985][90258] Num frames 8700...
[2023-03-03 15:32:26,037][90258] Num frames 8800...
[2023-03-03 15:32:26,088][90258] Num frames 8900...
[2023-03-03 15:32:26,138][90258] Num frames 9000...
[2023-03-03 15:32:26,189][90258] Num frames 9100...
[2023-03-03 15:32:26,241][90258] Num frames 9200...
[2023-03-03 15:32:26,297][90258] Num frames 9300...
[2023-03-03 15:32:26,351][90258] Num frames 9400...
[2023-03-03 15:32:26,403][90258] Num frames 9500...
[2023-03-03 15:32:26,455][90258] Num frames 9600...
[2023-03-03 15:32:26,505][90258] Num frames 9700...
[2023-03-03 15:32:26,584][90258] Avg episode rewards: #0: 25.718, true rewards: #0: 10.829
[2023-03-03 15:32:26,585][90258] Avg episode reward: 25.718, avg true_objective: 10.829
[2023-03-03 15:32:26,633][90258] Num frames 9800...
[2023-03-03 15:32:26,686][90258] Num frames 9900...
[2023-03-03 15:32:26,735][90258] Num frames 10000...
[2023-03-03 15:32:26,783][90258] Num frames 10100...
[2023-03-03 15:32:26,831][90258] Num frames 10200...
[2023-03-03 15:32:26,879][90258] Num frames 10300...
[2023-03-03 15:32:26,928][90258] Num frames 10400...
[2023-03-03 15:32:26,990][90258] Avg episode rewards: #0: 24.318, true rewards: #0: 10.418
[2023-03-03 15:32:26,990][90258] Avg episode reward: 24.318, avg true_objective: 10.418
[2023-03-03 15:32:40,153][90258] Replay video saved to /home/lorencl/git/ReinforcementLearning/Lesson8/train_dir/default_experiment/replay.mp4!