File size: 7,240 Bytes
cb9e677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import operator
from functools import partial, reduce
from typing import Iterable, List, Optional
import torch
import torch.distributed.algorithms._checkpoint.checkpoint_wrapper as torch_ckpt
import torch.nn as nn
from xformers.ops.fmha import memory_efficient_attention
from xformers.ops.fmha.attn_bias import AttentionBias, BlockDiagonalCausalMask
from .args import ModelArgs
from .lora import LoRALinear
from .moe import MoeLayer
from .rope import apply_rotary_emb, precompute_freqs_cis
def repeat_kv(keys: torch.Tensor, values: torch.Tensor, repeats: int, dim: int):
keys = torch.repeat_interleave(keys, repeats=repeats, dim=dim)
values = torch.repeat_interleave(values, repeats=repeats, dim=dim)
return keys, values
def maybe_lora_layer(
args: ModelArgs, rank: Optional[int] = None
) -> partial[LoRALinear] | type[nn.Linear]:
MaybeLora: partial[LoRALinear] | type[nn.Linear]
if not args.lora.enable:
return nn.Linear
rank = rank or args.lora.rank
scaling = args.lora.scaling
dropout = args.lora.dropout
MaybeLora = partial(
LoRALinear,
rank=rank,
scaling=scaling,
dropout=dropout,
)
return MaybeLora
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.n_heads: int = args.n_heads
self.n_kv_heads: int = args.n_kv_heads
self.head_dim: int = args.head_dim
self.repeats = self.n_heads // self.n_kv_heads
self.scale = self.args.head_dim**-0.5
MaybeLora = maybe_lora_layer(args)
self.wq = MaybeLora(args.dim, args.n_heads * args.head_dim, bias=False)
self.wk = MaybeLora(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wv = MaybeLora(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wo = MaybeLora(args.n_heads * args.head_dim, args.dim, bias=False)
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
mask: AttentionBias,
) -> torch.Tensor:
seqlen_sum, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(seqlen_sum, self.n_heads, self.args.head_dim)
xk = xk.view(seqlen_sum, self.n_kv_heads, self.args.head_dim)
xv = xv.view(seqlen_sum, self.n_kv_heads, self.args.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
key, val = xk, xv
# Repeat keys and values to match number of query heads
key, val = repeat_kv(key, val, self.repeats, dim=1)
# xformers requires (B=1, S, H, D)
xq, key, val = xq[None, ...], key[None, ...], val[None, ...]
output = memory_efficient_attention(xq, key, val, mask)
return self.wo(output.view(seqlen_sum, -1))
class FeedForward(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
MaybeLora = maybe_lora_layer(args)
self.w1 = MaybeLora(args.dim, args.hidden_dim, bias=False)
self.w2 = MaybeLora(args.hidden_dim, args.dim, bias=False)
self.w3 = MaybeLora(args.dim, args.hidden_dim, bias=False)
def forward(self, x) -> torch.Tensor:
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.attention = Attention(args)
self.feed_forward: MoeLayer | FeedForward
if args.moe is not None:
self.feed_forward = MoeLayer(
experts=[FeedForward(args=args) for _ in range(args.moe.num_experts)],
gate=nn.Linear(args.dim, args.moe.num_experts, bias=False),
moe_args=args.moe,
)
else:
self.feed_forward = FeedForward(args=args)
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.args = args
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
att_mask: AttentionBias,
) -> torch.Tensor:
r = self.attention(self.attention_norm(x), freqs_cis, att_mask)
h = x + r
r = self.feed_forward(self.ffn_norm(h))
out = h + r
return out
class Transformer(nn.Module):
def __init__(self, args: ModelArgs, checkpoint: bool = False):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.n_layers = args.n_layers
assert self.vocab_size > 0
self.tok_embeddings = torch.nn.Embedding(args.vocab_size, args.dim)
self.layers = torch.nn.ModuleList()
for _ in range(args.n_layers):
block: torch.nn.Module = TransformerBlock(args=args)
if checkpoint:
# activate gradient checkpointing as, see: https://pytorch.org/docs/stable/checkpoint.html
non_reentrant_wrapper = partial(
torch_ckpt.checkpoint_wrapper,
checkpoint_impl=torch_ckpt.CheckpointImpl.NO_REENTRANT,
)
block = non_reentrant_wrapper(block)
self.layers.append(block)
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = torch.nn.Linear(
args.dim,
args.vocab_size,
bias=False,
)
# set lazily
self._freqs_cis = None
@property
def dtype(self) -> torch.dtype:
return self.tok_embeddings.weight.dtype
@property
def device(self) -> torch.device:
return self.tok_embeddings.weight.device
@property
def freqs_cis(self):
# lazy init
device = next(iter(self.parameters())).device
if self._freqs_cis is None:
self._freqs_cis = precompute_freqs_cis(
self.args.head_dim, 128_000, theta=self.args.rope_theta, device=device
)
return self._freqs_cis
def forward(
self,
input_ids: torch.Tensor,
seqlens: List[int],
) -> torch.Tensor:
assert sum(seqlens) == input_ids.shape[0], (sum(seqlens), input_ids.shape[0])
h = self.tok_embeddings(input_ids)
positions = positions_from_sizes(seqlens, self.freqs_cis.device)
att_mask = BlockDiagonalCausalMask.from_seqlens(seqlens)
freqs_cis = self.freqs_cis[positions].to(device=h.device)
for layer in self.layers:
h = layer(h, freqs_cis, att_mask)
return self.output(self.norm(h)).float()
def positions_from_sizes(sizes: Iterable[int], device):
return torch.tensor(
reduce(operator.iadd, [list(range(s)) for s in sizes], []),
dtype=torch.long,
device=device,
)
|