File size: 9,482 Bytes
cb9e677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import dataclasses
import logging
import os
import pprint
from contextlib import ExitStack
from pathlib import Path
from typing import TYPE_CHECKING
import fire
import torch.cuda
import torch.distributed as dist
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from torch.optim import AdamW, lr_scheduler
from finetune.args import TrainArgs
from finetune.checkpointing import Checkpointer
from finetune.data.data_loader import build_data_loader
from finetune.distributed import (
BACKEND,
avg_aggregate,
get_rank,
get_world_size,
is_torchrun,
set_device,
)
from finetune.eval import evaluate
from finetune.loss import compute_loss_with_mask
from finetune.mixed_precision import (
downcast_mixed_precision,
prepare_mixed_precision,
upcast_mixed_precision,
)
from finetune.monitoring.metrics_logger import (
MetricsLogger,
eval_log_msg,
get_eval_logs,
get_train_logs,
train_log_msg,
)
from finetune.monitoring.utils import set_logger
from finetune.utils import (
TrainState,
logged_closing,
set_random_seed,
)
from finetune.wrapped_model import load_model
if TYPE_CHECKING:
from mistral_common.tokens.tokenizers.sentencepiece import InstructTokenizerBase
logger = logging.getLogger("train")
def main_logger_info(message: str) -> None:
if get_rank() == 0:
logger.info(message)
#wandb.log({"info": message})
def train(config: str):
args: TrainArgs = TrainArgs.load(config, drop_extra_fields=False)
print(f"args: {args}")
set_logger(logging.INFO)
#if get_rank() == 0:
# wandb.init(project="CHEMISTral7b-ft",entity = "oops")
# wandb.config.update(dataclasses.asdict(args))
with ExitStack() as exit_stack:
_train(args, exit_stack)
logger.info("Closed everything!")
def _train(
args: TrainArgs,
exit_stack: ExitStack,
):
# 1. Initial setup and checks
set_random_seed(args.seed)
# Init NCCL
if "LOCAL_RANK" in os.environ:
set_device()
logger.info("Going to init comms...")
dist.init_process_group(backend=BACKEND)
else:
logger.error(
"PyTorch environment is not correctly initialized. This message should only be displayed when testing."
)
# 2. Init run dir
main_logger_info(f"Run dir: {args.run_dir}")
run_dir = Path(args.run_dir)
if is_torchrun():
if run_dir.exists():
raise RuntimeError(
f"Run dir {run_dir} already exists. Make sure to either rename `run_dir` or remove {run_dir}."
)
dist.barrier()
run_dir.mkdir(exist_ok=True, parents=True)
args_path = run_dir / "args.yaml"
if not args_path.exists():
args.save(args_path)
main_logger_info(f"TrainArgs: {pprint.pformat(dataclasses.asdict(args))}")
# 3. Get loggers
metrics_logger: MetricsLogger = MetricsLogger(
run_dir,
tag="train",
is_master=get_rank() == 0,
wandb_args=args.wandb,
mlflow_args=args.mlflow,
config=dataclasses.asdict(args),
)
exit_stack.enter_context(logged_closing(metrics_logger, "metrics_logger"))
eval_logger: MetricsLogger = MetricsLogger(
run_dir,
tag="eval",
is_master=get_rank() == 0,
wandb_args=args.wandb,
mlflow_args=args.mlflow,
config=dataclasses.asdict(args),
)
exit_stack.enter_context(logged_closing(eval_logger, "eval_logger"))
# 5. Potentially download model
if Path(args.model_id_or_path).is_dir():
model_folder = Path(args.model_id_or_path)
else:
raise ValueError(
"Invalid folder path. Please set `args.initial_model` to a valid folder path."
)
# 6. Load function calling instruct tokenizer
instruct_tokenizer: InstructTokenizerBase = MistralTokenizer.v3().instruct_tokenizer # type: ignore
# 7. Load data loaders
data_loader = build_data_loader(
instruct_tokenizer=instruct_tokenizer,
args=args.data,
seq_len=args.seq_len,
batch_size=args.batch_size,
seed=args.seed,
rank=get_rank(), # DDP rank
world_size=get_world_size(), # DDP world_size
is_eval=False,
)
if not args.no_eval:
assert (
args.data.eval_instruct_data != ""
), "Either set `no_eval` to True or provide evaluation samples under `data.eval_instruct_data`"
eval_data_loader = build_data_loader(
instruct_tokenizer=instruct_tokenizer,
args=args.data,
seq_len=args.seq_len,
batch_size=args.batch_size,
seed=None,
rank=get_rank(), # DDP rank
world_size=get_world_size(), # DDP world_size
is_eval=True,
)
# pre-load all eval tokens
eval_batches = list(eval_data_loader)
# 8. Load model
# Define mixed precision
param_dtype = torch.bfloat16
optim_dtype = torch.float32
assert args.lora is not None, "`args.lora` should be set to a valid value."
model = load_model(
folder=model_folder,
lora=args.lora,
checkpoint=args.checkpoint,
param_dtype=param_dtype,
)
# 9. Load optimizer
optimizer = AdamW(
model.parameters(),
lr=args.optim.lr,
betas=(0.9, 0.95),
eps=1e-08,
weight_decay=args.optim.weight_decay,
)
scheduler = lr_scheduler.OneCycleLR(
optimizer,
max_lr=args.optim.lr,
total_steps=args.max_steps,
pct_start=args.optim.pct_start,
)
state = TrainState(args.max_steps)
# 10. Initialize checkpointer
checkpointer = Checkpointer(
model=model,
state=state,
run_dir=run_dir,
optimizer=optimizer,
num_ckpt_keep=args.num_ckpt_keep,
)
# 11. Prepare mixed precision
prepare_mixed_precision(
model.parameters(), param_dtype=param_dtype, optim_dtype=optim_dtype
)
# 12. train!
model.train()
torch.cuda.empty_cache()
while state.step < args.max_steps:
state.start_step()
is_last_step = state.step == args.max_steps
optimizer.zero_grad()
loss = torch.tensor([0.0], device="cuda")
n_batch_tokens: int = 0
for i in range(args.num_microbatches):
# batch
batch = next(data_loader)
x = torch.from_numpy(batch.x).cuda(non_blocking=True)
y = torch.from_numpy(batch.y).cuda(non_blocking=True)
y_mask = (
torch.from_numpy(batch.y_mask).cuda(non_blocking=True)
if batch.y_mask is not None
else None
)
# forward / backward
output = model(
input_ids=x,
seqlens=batch.sizes,
)
mb_loss = compute_loss_with_mask(output, y, y_mask)
mb_loss.backward()
loss += mb_loss.detach()
n_batch_tokens += x.numel()
if i < args.num_microbatches - 1:
# synchronize CUDA to re-run backward
assert args.num_microbatches > 1 # should not happen
torch.cuda.synchronize()
if args.num_microbatches > 1:
loss /= args.num_microbatches
for p in model.parameters():
if p.requires_grad:
assert p.grad is not None
p.grad.div_(args.num_microbatches)
# upcast params for optimizer update
upcast_mixed_precision(model.parameters(), optim_dtype=optim_dtype)
# clip gra d norm
model.clip_grad_norm_(max_norm=args.max_norm)
# optimizer step
optimizer.step()
# downcast params for forward & backward
downcast_mixed_precision(model.parameters(), param_dtype=param_dtype)
last_lr = scheduler.get_last_lr()[0]
scheduler.step()
# Host sync
loss_item = loss.item()
avg_loss = avg_aggregate(loss_item)
if not args.no_eval and (
(args.eval_freq > 0 and state.step % args.eval_freq == 0) or is_last_step
):
# write perplexity to state
evaluate(model, eval_batches, state)
eval_logs = get_eval_logs(
state.step, avg_loss, state.this_eval_perplexity, state.this_eval_loss
)
main_logger_info(eval_log_msg(eval_logs))
eval_logger.log(eval_logs, step=state.step)
# Timing
state.end_step(n_batch_tokens)
if state.step % args.log_freq == 0:
train_logs = get_train_logs(
state,
avg_loss,
last_lr,
torch.cuda.max_memory_allocated(),
torch.cuda.memory_allocated(),
args,
)
main_logger_info(train_log_msg(state, logs=train_logs, loss=avg_loss))
metrics_logger.log(train_logs, step=state.step)
if not args.no_ckpt and (
(args.ckpt_freq > 0 and state.step % args.ckpt_freq == 0) or is_last_step
):
checkpointer.save_checkpoint(
save_only_lora=args.ckpt_only_lora,
dtype=param_dtype,
instruct_tokenizer=instruct_tokenizer,
)
main_logger_info("done!")
if __name__ == "__main__":
"""See README.md for usage."""
fire.Fire(train)
|