File size: 14,829 Bytes
cb9e677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import dataclasses
import itertools
import json
import logging
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Set, Tuple, Union
import numpy as np
import torch.distributed as dist
from mistral_common.protocol.instruct.messages import (
FinetuningAssistantMessage,
SystemMessage,
)
from mistral_common.tokens.tokenizers.sentencepiece import InstructTokenizerBase
from finetune.distributed import get_rank
from .args import InstructArgs
from .tokenize import (
Mask,
SampleType,
TokenSample,
TrainingInstructSample,
build_instruct_sample,
encode,
)
logger = logging.getLogger("dataset")
_LOADED_DATASETS: Dict[Path, List[str]] = {}
def main_logger_info(message: str) -> None:
if dist.is_initialized() and get_rank() == 0:
logger.info(message)
def load_file(path: Path, world_size: int, rank: int) -> List[str]:
lines = []
with path.open() as f:
for idx, line in enumerate(f):
if not idx % world_size == rank:
continue
lines.append(line)
return lines
def maybe_load_local_dataset(
path: Path, chunk: bool, rank: int, world_size: int, instruct_tokenizer: InstructTokenizerBase, sample_type: SampleType
) -> List[TokenSample]:
global _LOADED_DATASETS
if path in _LOADED_DATASETS:
return _LOADED_DATASETS[path]
main_logger_info(f"Loading {path} ...")
lines: List[str] = load_file(path, rank=rank, world_size=world_size)
if chunk:
lines += maybe_chunk_lines(lines)
tokens_list: List[TokenSample] = []
for line in lines:
data = json.loads(line)
token_sample: TokenSample = encode(
data,
instruct_tokenizer=instruct_tokenizer,
as_type=sample_type,
)
tokens_list.append(token_sample)
main_logger_info(f"{path} loaded and tokenized.")
_LOADED_DATASETS[path] = tokens_list
return _LOADED_DATASETS[path]
@dataclass
class DataDir:
path: Path
sample_type: SampleType
@property
def jsonl_files(self):
assert self.path.exists(), f"Make sure that {self.path} exists"
jsonl_files = list(self.path.rglob("*jsonl"))
assert (
len(jsonl_files) > 0
), f"{self.path} does not seem to have any files ending with '.jsonl'"
return jsonl_files
@dataclass
class DataFile:
path: Path
sample_type: SampleType
@property
def jsonl_files(self):
assert self.path.exists(), f"Make sure that {self.path} exists"
return [self.path]
def parse_data_sources(
pretrain_data: str,
instruct_data: str,
) -> Tuple[List[Union[DataDir, DataFile]], List[float]]:
seen: Set[str] = set()
sources: List[Union[DataDir, DataFile]] = []
weights: List[float] = []
for sample_sources, sample_type in [
(pretrain_data, SampleType.PRETRAIN),
(instruct_data, SampleType.INSTRUCT),
]:
for source in sample_sources.strip().split(","):
if not source:
continue
source_items = source.strip().split(":")
if len(source_items) == 1:
path_ = source_items[0]
weight = 1.0
elif len(source_items) == 2:
path_, weight_ = source_items
weight = float(weight_)
else:
raise ValueError(
f"{source} is not correctly formatted. Make sure to format each data source as <path/to/data>:<weight> or just <path/to/data>"
)
assert (
path_ not in seen
), f"{path_} seems to be duplicated. Make sure to only add it once."
assert (
weight > 0
), f"Make sure to define strictly positive data sampling weights, not {weight}"
data: Union[DataDir, DataFile]
if Path(path_).is_dir():
data = DataDir(path=Path(path_), sample_type=sample_type)
elif Path(path_).is_file():
data = DataFile(path=Path(path_), sample_type=sample_type)
else:
raise FileNotFoundError(
f"The path {path_} does not exist. Make sure {path_} is either a file or directory that contains training data."
)
sources.append(data)
weights.append(weight)
seen.add(path_)
sum_weights = sum(weights)
n_weights = [weight / sum_weights for weight in weights]
assert min(n_weights) > 0
assert (
abs(1 - sum(n_weights)) < 1e-8
), f"Defined data sampling weights {weights} must sum to 1."
return sources, n_weights
@dataclasses.dataclass()
class SequenceMaskAndSizes:
"""
Concatenation of samples to reach a given size
"""
x: List[int]
y: List[int]
mask: Mask
sizes: List[int]
def __post_init__(self):
assert sum(self.sizes) == len(self.x) == len(self.y) == len(self.mask)
def sequence_iterator(
ds_it: Iterator[TokenSample],
seq_len: int,
is_finite: bool,
) -> Iterator[SequenceMaskAndSizes]:
"""
Creates sequences of length `seq_len` from the dataset iterator by concatenating samples.
"""
x_buffer: List[int] = []
y_buffer: List[int] = []
mask_buffer: Mask = []
sizes: List[int] = []
n_missing = seq_len
for sample in ds_it:
assert 0 <= len(x_buffer) < seq_len, len(x_buffer)
assert n_missing == seq_len - len(
x_buffer
), f"n_missing: {n_missing} | seq_len - len(x_buffer) {seq_len - len(x_buffer)}"
tokens, mask = sample.tokens, sample.masks[1:]
x, y = tokens[:-1], tokens[1:]
cur_pos = 0
while cur_pos < len(x):
size = len(x[cur_pos : cur_pos + n_missing])
curr_mask = mask[cur_pos : cur_pos + n_missing]
if not any(curr_mask):
cur_pos += size
# we have a sequence with a mask filled with False
continue
x_buffer.extend(x[cur_pos : cur_pos + n_missing])
y_buffer.extend(y[cur_pos : cur_pos + n_missing])
mask_buffer.extend(curr_mask)
n_missing -= size
sizes.append(size)
cur_pos += size
if n_missing == 0:
assert len(mask_buffer) == len(x_buffer) == seq_len == len(y_buffer)
assert sum(sizes) == seq_len
# we don't want to yield sequences with a mask filled with False
if any(mask_buffer):
yield SequenceMaskAndSizes(
x=x_buffer,
y=y_buffer,
mask=mask_buffer,
sizes=sizes,
)
x_buffer, y_buffer = [], []
mask_buffer = []
sizes = []
n_missing = seq_len
if is_finite:
# if dataloader is in eval, pad to seq length
if any(mask_buffer):
mask_buffer.extend(n_missing * [False])
x_buffer.extend(n_missing * [0])
y_buffer.extend(n_missing * [0])
sizes.append(n_missing)
yield SequenceMaskAndSizes(
x=x_buffer,
y=y_buffer,
mask=mask_buffer,
sizes=sizes,
)
def build_dataset(
pretrain_data: str,
instruct_data: str,
instruct_args: InstructArgs,
instruct_tokenizer: InstructTokenizerBase,
seq_len: int,
seed: Optional[int],
rank: int,
world_size: int,
is_eval: bool,
shuffle_pretrain: bool = False,
) -> Iterator[SequenceMaskAndSizes]:
sources, probabilities = parse_data_sources(
pretrain_data=pretrain_data, instruct_data=instruct_data
)
def do_shuffle(source: Union[DataDir, DataFile]) -> bool:
shuffle = {
SampleType.PRETRAIN: shuffle_pretrain,
SampleType.INSTRUCT: instruct_args.shuffle,
}[source.sample_type]
return not is_eval and shuffle
dataset_iterators = [
get_dataset_iterator(
source,
instruct_args=instruct_args,
instruct_tokenizer=instruct_tokenizer,
rank=rank,
world_size=world_size,
is_finite=is_eval,
seed=seed,
shuffle_at_epoch=do_shuffle(source),
)
for source in sources
]
sequence_iterators = [
sequence_iterator(
ds_it=it,
seq_len=seq_len,
is_finite=is_eval,
)
for it in dataset_iterators
]
if is_eval:
combined_iterator = itertools.chain.from_iterable(sequence_iterators)
else:
# make sure random_seed is different per rank and original seed
random_seed = np.array((seed, rank))
rng = np.random.RandomState(seed=random_seed)
combined_iterator = interleave_iterators(
sequence_iterators, probabilities=probabilities, rng=rng
)
return combined_iterator
def get_rng(seed: int, rank: int) -> np.random.RandomState:
random_seed = np.array((seed, rank))
rng = np.random.RandomState(seed=random_seed)
return rng
def get_dataset_iterator(
source: Union[DataDir, DataFile],
instruct_args: InstructArgs,
instruct_tokenizer: InstructTokenizerBase,
rank: int,
world_size: int,
is_finite: bool,
seed: Optional[int],
shuffle_at_epoch: bool,
) -> Iterator[TokenSample]:
jsonl_files = source.jsonl_files
rng: Optional[np.random.RandomState] = (
get_rng(seed, rank) if seed is not None else None
)
chunk_dataset = (
instruct_args.dynamic_chunk_fn_call
and source.sample_type == SampleType.INSTRUCT
)
if not is_finite:
# train mode
while True:
for jsonl_file in jsonl_files:
if shuffle_at_epoch:
assert rng is not None, "`seed` has to be passed when shuffling"
# will preload all data into RAM, shuffle and yield
yield from preload_and_yield(
jsonl_file,
chunk_dataset=chunk_dataset,
rank=rank,
world_size=world_size,
rng=rng,
instruct_tokenizer=instruct_tokenizer,
sample_type=source.sample_type,
)
else:
# will read data on-the-fly and yield
main_logger_info(f"Lazily loading {jsonl_file} ...")
yield from lazy_load_and_yield(
jsonl_file,
rank=rank,
world_size=world_size,
instruct_tokenizer=instruct_tokenizer,
sample_type=source.sample_type,
)
else:
# eval mode
for jsonl_file in jsonl_files:
# No need to shuffle for eval
yield from lazy_load_and_yield(
jsonl_file,
rank=rank,
world_size=world_size,
instruct_tokenizer=instruct_tokenizer,
sample_type=source.sample_type,
)
def preload_and_yield(
jsonl_file: Path,
chunk_dataset: bool,
rank: int,
world_size: int,
rng: np.random.RandomState,
instruct_tokenizer: InstructTokenizerBase,
sample_type: SampleType,
) -> Iterator[TokenSample]:
# only instruct data has to be chunked
# load dataset if not already loaded. Make sure to only load 1/world_size dataset
tokens_list = maybe_load_local_dataset(
jsonl_file, chunk=chunk_dataset, rank=rank, world_size=world_size, instruct_tokenizer=instruct_tokenizer, sample_type=sample_type
)
if sample_type == SampleType.PRETRAIN:
assert chunk_dataset is False, "Pretrain data should not have chunking enabled."
main_logger_info(f"Shuffling {jsonl_file} ...")
rng.shuffle(tokens_list)
for token_sample in tokens_list:
yield token_sample
def lazy_load_and_yield(
jsonl_file: Path,
rank: int,
world_size: int,
instruct_tokenizer: InstructTokenizerBase,
sample_type: SampleType,
):
with jsonl_file.open() as file_handle:
for idx, line in enumerate(file_handle):
if not idx % world_size == rank:
continue
data = json.loads(line)
yield encode(
data,
instruct_tokenizer=instruct_tokenizer,
as_type=sample_type,
)
def maybe_chunk_lines(lines: List[str]) -> List[str]:
extra_lines: List[str] = []
for line in lines:
data = json.loads(line)
# mult-turn fn call data will be chunked and shorder conversations are added additionally
maybe_chunked_lines = maybe_chunk_data(data)
extra_lines.extend([json.dumps(line) for line in maybe_chunked_lines])
return extra_lines
def maybe_chunk_data(data: Dict[str, Any]) -> List[Dict[str, Any]]:
# think about always allowing both open-ai and non-open-ai data
sample = build_instruct_sample(data)
def num_assistant_messages(sample: TrainingInstructSample) -> int:
return len(
[m for m in sample.messages if isinstance(m, FinetuningAssistantMessage)]
)
chunk_data = []
while sample.only_last is True and num_assistant_messages(sample) > 1:
assert sample == build_instruct_sample(sample.dict())
last_message = sample.messages.pop()
# 1. First pop until and including last assistant message
system_message = None
while not isinstance(last_message, FinetuningAssistantMessage):
last_message = sample.messages.pop()
if isinstance(last_message, SystemMessage):
system_message = last_message
# 2. Second pop until and excluding last assistant message
prev_last_message = sample.messages[-1]
while not isinstance(prev_last_message, FinetuningAssistantMessage):
last_message = sample.messages.pop()
if isinstance(last_message, SystemMessage):
system_message = last_message
prev_last_message = sample.messages[-1]
# if system_message is not None, append again
if system_message is not None:
sample.messages.append(system_message)
chunk_data.append(sample.dict())
return chunk_data
def interleave_iterators(iterators: List[Iterator], probabilities, rng):
while True:
it_id = rng.choice(range(len(iterators)), p=probabilities)
yield next(iterators[it_id])
|