ChrisLalk commited on
Commit
69f8e68
·
verified ·
1 Parent(s): 03f3b55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -101
README.md CHANGED
@@ -25,105 +25,4 @@ This is basically the German translation of arpanghoshal/EmoRoBERTa. We used the
25
  - roc_auc: 0.658
26
 
27
 
28
- **Example Code**
29
- """**Inference**"""
30
- # pip install transformers[torch]
31
- # pip install pandas, transformers, numpy, tqdm, openpyxl
32
 
33
- import pandas as pd
34
- import torch
35
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
36
- import numpy as np
37
- from tqdm import tqdm
38
- import time
39
- import os
40
- from transformers import DataCollatorWithPadding
41
- import json
42
-
43
- # create base path
44
- base_path = "/share/users/staff/c/clalk/Emotionen"
45
-
46
- #create input and output path for the model folder and the file folder
47
- model_path = os.path.join(base_path, 'Modell')
48
- file_path = os.path.join(base_path, 'Datensatz')
49
-
50
-
51
- MODEL = "intfloat/multilingual-e5-large"
52
- tokenizer = AutoTokenizer.from_pretrained(MODEL, do_lower_case=False)
53
- model = AutoModelForSequenceClassification.from_pretrained(
54
- model_path,
55
- from_tf=False,
56
- from_flax=False,
57
- trust_remote_code=False,
58
- num_labels=28,
59
- ignore_mismatched_sizes=True
60
- )
61
-
62
- data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
63
-
64
- # Path to the file
65
- os.chdir(file_path)
66
-
67
- df_full = pd.read_excel("speech_turns_pat.xlsx", index_col=None)
68
-
69
- if 'Unnamed: 0' in df_full.columns:
70
- df_full = df_full.drop(columns=['Unnamed: 0'])
71
-
72
-
73
- df_full.reset_index(drop=True, inplace=True)
74
-
75
-
76
- # Funktion zur Tokenisierung und Inferenz
77
- def infer_texts(texts):
78
- tokenized_texts = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
79
- class SimpleDataset:
80
- def __init__(self, tokenized_texts):
81
- self.tokenized_texts = tokenized_texts
82
- def __len__(self):
83
- return len(self.tokenized_texts["input_ids"])
84
- def __getitem__(self, idx):
85
- return {k: v[idx] for k, v in self.tokenized_texts.items()}
86
- test_dataset = SimpleDataset(tokenized_texts)
87
- trainer = Trainer(model=model, data_collator=data_collator)
88
- predictions = trainer.predict(test_dataset)
89
- sigmoid = torch.nn.Sigmoid()
90
- probs = sigmoid(torch.Tensor(predictions.predictions))
91
-
92
- return np.round(np.array(probs), 3).tolist()
93
-
94
- start_time = time.time()
95
-
96
- df = df_full
97
-
98
- # Save results in a dict
99
- results = []
100
- for index, row in tqdm(df.iterrows(), total=df.shape[0]):
101
- patient_texts = row['Patient']
102
- prob_list = infer_texts(patient_texts)
103
- results.append({
104
- "File": row['Class']+"_"+row['session'],
105
- "Class": row['Class'],
106
- "session": row['session'],
107
- "short_id": row["short_id"],
108
- "long_id": row["long_id"],
109
- "Sentence": patient_texts,
110
- "Prediction": prob_list[0],
111
- "hscl-11": row["Gesamtscore_hscl"],
112
- "srs": row["srs_ges"],
113
- })
114
-
115
- # Convert results to df
116
- df_results = pd.DataFrame(results)
117
- df_results.to_json("emo_speech_turn_inference.json")
118
-
119
- end_time = time.time()
120
- elapsed_time = end_time - start_time
121
- print(f"Elapsed time: {elapsed_time:.2f} seconds")
122
- print(df_results)
123
-
124
-
125
- emo_df = pd.DataFrame(df_results['Prediction'].tolist(), index=df_results["Class"].index)
126
- col_names = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
127
- emo_df.columns = col_names
128
-
129
- print(emo_df)
 
25
  - roc_auc: 0.658
26
 
27
 
 
 
 
 
28