|
|
|
import gradio as gr
|
|
import os
|
|
import torch
|
|
|
|
from model import create_effnetb2_model
|
|
from timeit import default_timer as timer
|
|
from typing import Tuple , Dict
|
|
|
|
|
|
class_names = ['pizza','steak','sushi']
|
|
|
|
|
|
|
|
effnetb2 , effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
|
|
|
|
|
|
<<<<<<< HEAD
|
|
effnetb2.load_state_dict(torch.load(os.path.join("effnetb2.pth"),map_location=torch.device('cpu')))
|
|
=======
|
|
effnetb2.load_state_dict(torch.load("effnetb2.pth",map_location=torch.device('cpu')))
|
|
>>>>>>> f57d3888756f20e9db37eb8ce02739685876fb20
|
|
|
|
|
|
def predict(img):
|
|
"""
|
|
Transforms and performs a prediction on img and returns prediction and time taken.
|
|
"""
|
|
|
|
start_time = timer()
|
|
|
|
|
|
img = effnetb2_transforms(img).unsqueeze(0)
|
|
|
|
|
|
effnetb2.eval()
|
|
with torch.inference_mode():
|
|
|
|
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
|
|
|
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
|
|
|
pred_time = round(timer() - start_time , 5)
|
|
|
|
return pred_labels_and_probs, pred_time
|
|
|
|
|
|
|
|
|
|
title = "FoodVision Mini ππ₯©π£"
|
|
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
|
article = "Created "
|
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Interface(fn=predict,
|
|
inputs=gr.Image(type="pil"),
|
|
outputs=[gr.Label(num_top_classes=3, label="Predictions"),
|
|
gr.Number(label="Prediction time (s)")],
|
|
|
|
|
|
title=title,
|
|
description=description,
|
|
article=article)
|
|
|
|
|
|
demo.launch()
|
|
|