ChechkovEugene commited on
Commit
bd2061c
1 Parent(s): 847f8ab

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 250.17 +/- 23.41
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.12 +/- 17.59
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fceacd1c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fceacd1c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fceacd1c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fceacd1c700>", "_build": "<function ActorCriticPolicy._build at 0x7fceacd1c790>", "forward": "<function ActorCriticPolicy.forward at 0x7fceacd1c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fceacd1c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fceacd1c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fceacd1c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fceacd1ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fceacd1caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fceacd92de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670844798581235126, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACaIEb6fR8O7Ir+BtcHvKrMJuRM9NJOYNAAAgD8AAIA/ZhpkPXvOp7qYeO863PiTNeedkLoNNAm6AACAPwAAgD+aQQa8rumfumi62rbpP66xpGqduagU/DUAAIA/AACAP9NWfj5oZoU/3mO/PoQdpr7NtJs+2jHzPQAAAAAAAAAATZGlvSnIXboz37O3txyksuCtkbhgstM2AACAPwAAgD9mY2k9FEiDumZA57VtehAynCRBuxKDGTUAAIA/AACAP5oZwrt7xrK6Nc1ttBxHjq8KIp05bgGWMwAAgD8AAIA/ZjIivSk0drroNXS72gNDOHUOErtaYgo6AACAPwAAgD+auvA8j4IeuhZp2TTT0E0wQ4CCO975H7QAAIA/AACAP2aoK7wppB663Ow5tTPU9C51VIa74iBMNAAAgD8AAIA/ZnqiOxZzsz8HAyU+1iwjvqKOhbuvj5+7AAAAAAAAAADNj0K94cyTuk4U/jM1PCivTe4TuXtiqbMAAIA/AACAP0C8/L1H+KU/8k0cv9PFib7RIuq9xpxtvgAAAAAAAAAAzYiDPCnseLqxsYi6bDdrtqNvATuSEdo1AACAPwAAgD9mvpU9SfS5PxWl1T7alqu9wLN3PD88Mj4AAAAAAAAAAA39jL32gEC6wODgOs1XsTU4L2+7yrkEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrrfNVIjbZ0CUhpRSlIwBbJRN6AOMAXSUR0CQRNQdjoZAdX2UKGgGaAloD0MIqdiY1xEsY0CUhpRSlGgVTegDaBZHQJBGJTQ3PzF1fZQoaAZoCWgPQwixpx3+Gh5hQJSGlFKUaBVN6ANoFkdAkFPtZV4oqnV9lChoBmgJaA9DCDC6vDlcaGJAlIaUUpRoFU3oA2gWR0CQVJVZLZi/dX2UKGgGaAloD0MICft2EpEzYkCUhpRSlGgVTegDaBZHQJBUtdTo+wF1fZQoaAZoCWgPQwgQWDm0SJJlQJSGlFKUaBVN6ANoFkdAkFzH3cpLEnV9lChoBmgJaA9DCM0d/S/XlWRAlIaUUpRoFU3oA2gWR0CQXoQUHpr2dX2UKGgGaAloD0MIrwj+t5KlY0CUhpRSlGgVTegDaBZHQJBg0vUSZjR1fZQoaAZoCWgPQwgwnGuYoV1gQJSGlFKUaBVN6ANoFkdAkGYikXUH6nV9lChoBmgJaA9DCDPcgM+PamJAlIaUUpRoFU3oA2gWR0CQaP2RJVbSdX2UKGgGaAloD0MI/RadLDXqZECUhpRSlGgVTegDaBZHQJBpu4Ds+mp1fZQoaAZoCWgPQwgouFhRgztgQJSGlFKUaBVN6ANoFkdAkGy3hCMP0HV9lChoBmgJaA9DCF95kJ6iimNAlIaUUpRoFU3oA2gWR0CQksJRO1v3dX2UKGgGaAloD0MIDw2LUdd2ZECUhpRSlGgVTegDaBZHQJCTWAoXsPd1fZQoaAZoCWgPQwi+MQQAxwVmQJSGlFKUaBVN6ANoFkdAkJU5DVpblnV9lChoBmgJaA9DCNsV+mCZrWJAlIaUUpRoFU3oA2gWR0CQlc2MbWEsdX2UKGgGaAloD0MI02weh8FMXkCUhpRSlGgVTegDaBZHQJCbdVLi++N1fZQoaAZoCWgPQwhgI0kQrm5jQJSGlFKUaBVN6ANoFkdAkJzWvB7/oHV9lChoBmgJaA9DCLWjOEeda2VAlIaUUpRoFU3oA2gWR0CQqpiXY150dX2UKGgGaAloD0MIIo51cRuHZECUhpRSlGgVTegDaBZHQJCrP8zhxYJ1fZQoaAZoCWgPQwhzvALRE6NhQJSGlFKUaBVN6ANoFkdAkKtfJV81GnV9lChoBmgJaA9DCIqT+x0KMmNAlIaUUpRoFU3oA2gWR0CQsoiNsFdLdX2UKGgGaAloD0MIZjIcz2e6ZUCUhpRSlGgVTegDaBZHQJCzzNTtLL91fZQoaAZoCWgPQwg33bJDfG1jQJSGlFKUaBVN6ANoFkdAkLWEZBLPEHV9lChoBmgJaA9DCAPRkzKpmGRAlIaUUpRoFU3oA2gWR0CQudFzdUKidX2UKGgGaAloD0MIOGVuvhEIYkCUhpRSlGgVTegDaBZHQJC8IOWjXWh1fZQoaAZoCWgPQwglsg+yrHpjQJSGlFKUaBVN6ANoFkdAkLy0Q5FPSHV9lChoBmgJaA9DCOOo3ESt8mtAlIaUUpRoFU2aAmgWR0CQviR+jM3ZdX2UKGgGaAloD0MIndUCe0xOZUCUhpRSlGgVTegDaBZHQJC/KtDD0lJ1fZQoaAZoCWgPQwidhT3tcINnQJSGlFKUaBVN6ANoFkdAkOG0oWpIc3V9lChoBmgJaA9DCLNdoQ+W/mBAlIaUUpRoFU3oA2gWR0CQ4kNvOyE+dX2UKGgGaAloD0MIniPyXUo6ZUCUhpRSlGgVTegDaBZHQJDj+PeYUnJ1fZQoaAZoCWgPQwgJbM7BMxJiQJSGlFKUaBVN6ANoFkdAkOoXlr/KhnV9lChoBmgJaA9DCIiDhCjfWGBAlIaUUpRoFU3oA2gWR0CQ63isGPgfdX2UKGgGaAloD0MIiGh0B7HUX0CUhpRSlGgVTegDaBZHQJD5iZNO/L11fZQoaAZoCWgPQwjueJPfIidgQJSGlFKUaBVN6ANoFkdAkPotT5wfhnV9lChoBmgJaA9DCLIOR1fpnWVAlIaUUpRoFU3oA2gWR0CQ+k003wTedX2UKGgGaAloD0MIJT/iVyxhY0CUhpRSlGgVTegDaBZHQJEBqe2/i5x1fZQoaAZoCWgPQwjv4ZLjzmBiQJSGlFKUaBVN6ANoFkdAkQMI6jnFHnV9lChoBmgJaA9DCBe5p6u7Y2NAlIaUUpRoFU3oA2gWR0CRBO0Z3s5XdX2UKGgGaAloD0MIpkV9krtpYUCUhpRSlGgVTegDaBZHQJEJb+3pfQd1fZQoaAZoCWgPQwg8vVKWIQZjQJSGlFKUaBVN6ANoFkdAkQvS1Vo6CHV9lChoBmgJaA9DCBa/KazUC2VAlIaUUpRoFU3oA2gWR0CRDHRradtmdX2UKGgGaAloD0MI/PuMC4cOYkCUhpRSlGgVTegDaBZHQJEOAwHqu8t1fZQoaAZoCWgPQwjwTGiSWINdQJSGlFKUaBVN6ANoFkdAkQ8ZIUahpXV9lChoBmgJaA9DCFbzHJHvZmVAlIaUUpRoFU3oA2gWR0CRMthtLteEdX2UKGgGaAloD0MIgQabOo+3XkCUhpRSlGgVTegDaBZHQJEzaw8nuzB1fZQoaAZoCWgPQwgB9zx/2qFgQJSGlFKUaBVN6ANoFkdAkTUjWK/EfnV9lChoBmgJaA9DCJPIPsgyy2tAlIaUUpRoFU3mAmgWR0CROY6CDmKZdX2UKGgGaAloD0MI78nDQi1JYECUhpRSlGgVTegDaBZHQJE7KG/N7jV1fZQoaAZoCWgPQwh6NUBpKOZiQJSGlFKUaBVN6ANoFkdAkTxy3XqZ+nV9lChoBmgJaA9DCHC1TlyOnmBAlIaUUpRoFU3oA2gWR0CRSsYwIt17dX2UKGgGaAloD0MIDDuMSf+YY0CUhpRSlGgVTegDaBZHQJFK5jwx33Z1fZQoaAZoCWgPQwhVh9wMt9VvQJSGlFKUaBVNQwNoFkdAkUsofW+XaHV9lChoBmgJaA9DCEfp0r+kCmFAlIaUUpRoFU3oA2gWR0CRUe7UG3WndX2UKGgGaAloD0MI8ItLVdp4XkCUhpRSlGgVTegDaBZHQJFTUqwyIpJ1fZQoaAZoCWgPQwgcti3KbG5lQJSGlFKUaBVN6ANoFkdAkVniWu5jIHV9lChoBmgJaA9DCNLj9zb9GmZAlIaUUpRoFU3oA2gWR0CRXJSy+pOvdX2UKGgGaAloD0MIsCDNWLQAYUCUhpRSlGgVTegDaBZHQJFdR9AooeB1fZQoaAZoCWgPQwg2PL1SluFjQJSGlFKUaBVN6ANoFkdAkV8L8zhxYXV9lChoBmgJaA9DCAA49uy582FAlIaUUpRoFU3oA2gWR0CRYCnH/95ydX2UKGgGaAloD0MILVxWYbP4Y0CUhpRSlGgVTegDaBZHQJGEVwrDqGF1fZQoaAZoCWgPQwgAOzdtRgFhQJSGlFKUaBVN6ANoFkdAkYTqbONYKnV9lChoBmgJaA9DCEcCDTZ1rGBAlIaUUpRoFU3oA2gWR0CRhpxNZeRgdX2UKGgGaAloD0MIWYgOgSN1b0CUhpRSlGgVTdoBaBZHQJGKdblijL11fZQoaAZoCWgPQwgJjPUNzDhjQJSGlFKUaBVN6ANoFkdAkYr6sU7CBXV9lChoBmgJaA9DCOscA7LXAGNAlIaUUpRoFU3oA2gWR0CRjHxgy/KydX2UKGgGaAloD0MIa5p3nCI8YUCUhpRSlGgVTegDaBZHQJGNu3Zwn6V1fZQoaAZoCWgPQwjuBPuv8xdvQJSGlFKUaBVNJQNoFkdAkZZriuMdcXV9lChoBmgJaA9DCEazsn3IjWRAlIaUUpRoFU3oA2gWR0CRmZvmHP/rdX2UKGgGaAloD0MI16GakiwGY0CUhpRSlGgVTegDaBZHQJGZuXNTtLN1fZQoaAZoCWgPQwi4WbxYmF9kQJSGlFKUaBVN6ANoFkdAkZnhfOUt7XV9lChoBmgJaA9DCDDZeLDFl2JAlIaUUpRoFU3oA2gWR0CRn5YJ3PiUdX2UKGgGaAloD0MIz4dnCTJ0bUCUhpRSlGgVTfgCaBZHQJGfuPvKEFp1fZQoaAZoCWgPQwhBZJEm3tFhQJSGlFKUaBVN6ANoFkdAkao86/7BPHV9lChoBmgJaA9DCI8X0uEhRV1AlIaUUpRoFU3oA2gWR0CRqvsvZh8ZdX2UKGgGaAloD0MIbLQc6CHqZECUhpRSlGgVTegDaBZHQJGs5gnc+JR1fZQoaAZoCWgPQwinXUwzXfdkQJSGlFKUaBVN6ANoFkdAkdhhqKxcFHV9lChoBmgJaA9DCHizBu8rbGNAlIaUUpRoFU3oA2gWR0CR2P72tdRjdX2UKGgGaAloD0MI5Lop5TWLZkCUhpRSlGgVTegDaBZHQJHauA6Mir11fZQoaAZoCWgPQwjltKfknMllQJSGlFKUaBVN6ANoFkdAkd5tv0h/zHV9lChoBmgJaA9DCGiSWFLuiVxAlIaUUpRoFU3oA2gWR0CR3uwVj7Q+dX2UKGgGaAloD0MIOgg6WtWpa0CUhpRSlGgVTbwBaBZHQJHfVhqj8DV1fZQoaAZoCWgPQwjjHHV03CRiQJSGlFKUaBVN6ANoFkdAkeBVHvttynV9lChoBmgJaA9DCJoK8Ui8jGZAlIaUUpRoFU3oA2gWR0CR4VsdT5wgdX2UKGgGaAloD0MINuUK73JqbECUhpRSlGgVTYcDaBZHQJHndnjABT51fZQoaAZoCWgPQwhtVRLZB0NmQJSGlFKUaBVN6ANoFkdAkekqT0QK8nV9lChoBmgJaA9DCP/omzQNqF9AlIaUUpRoFU3oA2gWR0CR7AEhq0tzdX2UKGgGaAloD0MI31LOF3v/a0CUhpRSlGgVTZECaBZHQJHrtoIv8Il1fZQoaAZoCWgPQwjfbd44qbpgQJSGlFKUaBVN6ANoFkdAkewc+u/1x3V9lChoBmgJaA9DCPRtwVLdtHBAlIaUUpRoFU2PAWgWR0CR7cHKwIMSdX2UKGgGaAloD0MIEfxvJbvbb0CUhpRSlGgVTdgBaBZHQJHwqqGUOd51fZQoaAZoCWgPQwgZV1wcld9eQJSGlFKUaBVN6ANoFkdAkfFmNm16V3V9lChoBmgJaA9DCIVefxIfW2VAlIaUUpRoFU3oA2gWR0CR8XuOS4e+dX2UKGgGaAloD0MISGx3D1C+cECUhpRSlGgVTXsBaBZHQJHzF67dzn11fZQoaAZoCWgPQwgttd5vNFplQJSGlFKUaBVN6ANoFkdAkfplZX+2mnV9lChoBmgJaA9DCBLBOLh08m9AlIaUUpRoFU1CAmgWR0CSD/VHnU2DdX2UKGgGaAloD0MI56p5jsgEckCUhpRSlGgVTX8CaBZHQJIRXpmmLtN1fZQoaAZoCWgPQwhpp+ZyA6lvQJSGlFKUaBVNzQNoFkdAkhGX5N47inV9lChoBmgJaA9DCMCuJk9ZM25AlIaUUpRoFU2PAmgWR0CSEraQ3gk1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1e965adc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1e965ae50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1e965aee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1e965af70>", "_build": "<function ActorCriticPolicy._build at 0x7fc1e9660040>", "forward": "<function ActorCriticPolicy.forward at 0x7fc1e96600d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc1e9660160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1e96601f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc1e9660280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1e9660310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1e96603a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1e9660430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc1e965e210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677412346034069281, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGYeVrs2CCK8y6neujYgAT0npjG81r0DtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPzc0ZafzQ0CUhpRSlIwBbJRL2YwBdJRHQKL6HkOI68x1fZQoaAZoCWgPQwjWcJF7un5DQJSGlFKUaBVL1mgWR0Ci+rm+0w8GdX2UKGgGaAloD0MIQNr/AGsRTkCUhpRSlGgVS9poFkdAovvqUPhAGHV9lChoBmgJaA9DCN0MN+Czz3FAlIaUUpRoFU0NAWgWR0Ci/LufmLccdX2UKGgGaAloD0MI6INlbGi7cUCUhpRSlGgVTS8BaBZHQKL9kHoHLRt1fZQoaAZoCWgPQwjUm1HzlSZzQJSGlFKUaBVNCAFoFkdAov5Y1k1/D3V9lChoBmgJaA9DCNrIdVPK2m1AlIaUUpRoFU0oAWgWR0Ci/8n6uW8idX2UKGgGaAloD0MIB7R0BZtfcECUhpRSlGgVTRYBaBZHQKMArxWkrPN1fZQoaAZoCWgPQwjfNH12QFByQJSGlFKUaBVL8GgWR0CjAVXC9AX3dX2UKGgGaAloD0MIkSv1LIhLb0CUhpRSlGgVTRMBaBZHQKMCIqQRwqB1fZQoaAZoCWgPQwireY7I9x9yQJSGlFKUaBVNEwFoFkdAowOV6E8JU3V9lChoBmgJaA9DCFYt6SgHYHFAlIaUUpRoFUvqaBZHQKMEQ6pYLb51fZQoaAZoCWgPQwiqgHuev4xwQJSGlFKUaBVL9GgWR0CjBPZa3ZwodX2UKGgGaAloD0MIvhb03hjKUkCUhpRSlGgVS/JoFkdAowWgrpaA4HV9lChoBmgJaA9DCC4EOShh9EtAlIaUUpRoFUvHaBZHQKMGzbVSXMR1fZQoaAZoCWgPQwj+0w0U+CJxQJSGlFKUaBVNDQFoFkdAowelTLns9nV9lChoBmgJaA9DCEuxo3Gog21AlIaUUpRoFU0YAWgWR0CjCIEhaC+UdX2UKGgGaAloD0MIUoGTbSA2ckCUhpRSlGgVS+poFkdAowlxS1mapnV9lChoBmgJaA9DCIdPOpFgim9AlIaUUpRoFU0YAWgWR0CjC3QPAfuDdX2UKGgGaAloD0MImPxP/q5AcUCUhpRSlGgVS/loFkdAowxzAUL2H3V9lChoBmgJaA9DCHnletuMYnFAlIaUUpRoFUvtaBZHQKMNaWrwOON1fZQoaAZoCWgPQwgQJVryuKNxQJSGlFKUaBVL7GgWR0CjDm/QKKHgdX2UKGgGaAloD0MIj1Tf+UVhb0CUhpRSlGgVTRgBaBZHQKMQpX6qKgt1fZQoaAZoCWgPQwgM5US7CtxRQJSGlFKUaBVL1mgWR0CjEXr6tT1kdX2UKGgGaAloD0MIFeRnI9drR0CUhpRSlGgVS8ZoFkdAoxJUPWhAW3V9lChoBmgJaA9DCLVRnQ5kDHBAlIaUUpRoFU0uAWgWR0CjE0MMy8BddX2UKGgGaAloD0MIdavnpLf9cUCUhpRSlGgVTSUBaBZHQKMUtE9dNWV1fZQoaAZoCWgPQwgZWTLHciNvQJSGlFKUaBVNKwFoFkdAoxWM9t/FznV9lChoBmgJaA9DCEVHcvkPFHFAlIaUUpRoFU0TAWgWR0CjFmRlQMx5dX2UKGgGaAloD0MIWixF8lUDcECUhpRSlGgVTSkBaBZHQKMXREfDDTB1fZQoaAZoCWgPQwhCXg8mxY81QJSGlFKUaBVLxWgWR0CjGHYBNmDldX2UKGgGaAloD0MIURVT6SdzcECUhpRSlGgVTa0BaBZHQKMZ73QD3dt1fZQoaAZoCWgPQwiZ9PdSeIRFQJSGlFKUaBVLumgWR0CjGnFJYkmhdX2UKGgGaAloD0MI1LZhFIQtcUCUhpRSlGgVS/1oFkdAoxvymXPZ7HV9lChoBmgJaA9DCGhBKO/j/EdAlIaUUpRoFUuraBZHQKMcbxdY4hl1fZQoaAZoCWgPQwjDnKBNjnlwQJSGlFKUaBVNHQFoFkdAox1F74SHunV9lChoBmgJaA9DCIyjchO1hEZAlIaUUpRoFUvUaBZHQKMd2FAVwgl1fZQoaAZoCWgPQwghBrr2RYZyQJSGlFKUaBVNHwFoFkdAox6omw7kn3V9lChoBmgJaA9DCLaF56Vi/zRAlIaUUpRoFUvbaBZHQKMf6nBLwnZ1fZQoaAZoCWgPQwhUck7sYShxQJSGlFKUaBVNDAFoFkdAoyCzt3OfNHV9lChoBmgJaA9DCEnZImn3m3NAlIaUUpRoFU0jAWgWR0CjIY07jkuIdX2UKGgGaAloD0MIYW73ct9fcUCUhpRSlGgVTRABaBZHQKMiUWdmQKd1fZQoaAZoCWgPQwhET8qkBmNvQJSGlFKUaBVNBAFoFkdAoyO53qzJIXV9lChoBmgJaA9DCLyvyoXK10JAlIaUUpRoFUvcaBZHQKMkYRpUPxx1fZQoaAZoCWgPQwh1HaopSc9sQJSGlFKUaBVNIAFoFkdAoyU6xX4j8nV9lChoBmgJaA9DCHGRe7o6a29AlIaUUpRoFU0rAWgWR0CjJvIqbz9TdX2UKGgGaAloD0MIOq+xS1RPckCUhpRSlGgVTSQBaBZHQKMoEtz0Yj11fZQoaAZoCWgPQwguPZrqyUVyQJSGlFKUaBVNFgFoFkdAoykbZ13dK3V9lChoBmgJaA9DCAHChxItaTBAlIaUUpRoFUvRaBZHQKMp5O58Sf11fZQoaAZoCWgPQwgYIxKFFiduQJSGlFKUaBVNBgFoFkdAoyvaaRZED3V9lChoBmgJaA9DCKDAO/n08EVAlIaUUpRoFUvyaBZHQKMs28274BV1fZQoaAZoCWgPQwgAdJgvb1NwQJSGlFKUaBVNMgFoFkdAoy49jTa0yHV9lChoBmgJaA9DCIPg8e2dWHJAlIaUUpRoFUv8aBZHQKMvVvMr3Cd1fZQoaAZoCWgPQwgK1jibjlxyQJSGlFKUaBVL62gWR0CjMPYKQaJidX2UKGgGaAloD0MIuVFkrSF9b0CUhpRSlGgVTSoBaBZHQKMx328qWkd1fZQoaAZoCWgPQwgt6pPcYd1tQJSGlFKUaBVNNwFoFkdAozLJ2MbWE3V9lChoBmgJaA9DCLaGUnsRBXJAlIaUUpRoFU06AWgWR0CjM7H7xd6cdX2UKGgGaAloD0MI2EroLsnAckCUhpRSlGgVTRkBaBZHQKM1JhP0qYt1fZQoaAZoCWgPQwjGM2jo3wZxQJSGlFKUaBVNaQFoFkdAozZN7WuoxnV9lChoBmgJaA9DCPNYMzLIYm5AlIaUUpRoFU0ZAWgWR0CjNyfSQYDUdX2UKGgGaAloD0MImBb1Se5BcUCUhpRSlGgVTSMBaBZHQKM4qeQMhHN1fZQoaAZoCWgPQwgjZYuk3a1bQJSGlFKUaBVN6ANoFkdAoz3KGQCCBnV9lChoBmgJaA9DCP+VlSZlJ3JAlIaUUpRoFU0+AWgWR0CjPtmMOwxGdX2UKGgGaAloD0MIogp/hreGcECUhpRSlGgVTUIBaBZHQKM/6xJNCZ51fZQoaAZoCWgPQwj3kPC9P/RuQJSGlFKUaBVNJQFoFkdAo0F7cuanaXV9lChoBmgJaA9DCDjZBu7Ak29AlIaUUpRoFU1DAWgWR0CjQndi+cpcdX2UKGgGaAloD0MIv9TPm0pBcUCUhpRSlGgVTQYBaBZHQKNDP6cAiml1fZQoaAZoCWgPQwiDhv4J7t5xQJSGlFKUaBVNDAFoFkdAo0QHlyR0VHV9lChoBmgJaA9DCMx6MZSTpmxAlIaUUpRoFU1NAWgWR0CjRiODjBEbdX2UKGgGaAloD0MIBz9xAP3hb0CUhpRSlGgVTR0BaBZHQKNHR84Pwux1fZQoaAZoCWgPQwjIef8fJ0RPQJSGlFKUaBVL52gWR0CjSCt0/4ZddX2UKGgGaAloD0MIhgK2gxEwcUCUhpRSlGgVTawBaBZHQKNLLh+fAbh1fZQoaAZoCWgPQwh1r5P68i5yQJSGlFKUaBVNQQFoFkdAo0yUAWBSUHV9lChoBmgJaA9DCE7yI37FuVFAlIaUUpRoFUvGaBZHQKNNXpoK2KF1fZQoaAZoCWgPQwgqdF5jl3JwQJSGlFKUaBVNcwFoFkdAo07MpTdcjnV9lChoBmgJaA9DCHAH6pQH/XBAlIaUUpRoFU1HAWgWR0CjUFtnwob5dX2UKGgGaAloD0MI9fbnouEicUCUhpRSlGgVS/VoFkdAo1EbxwyZa3V9lChoBmgJaA9DCIfEPZZ+pXBAlIaUUpRoFU0aAWgWR0CjUf4+bExZdX2UKGgGaAloD0MI0xVsI943ckCUhpRSlGgVS+5oFkdAo1NYxDb8FnV9lChoBmgJaA9DCN6rVib81G5AlIaUUpRoFU0kAWgWR0CjVD5iNKh+dX2UKGgGaAloD0MILT4FwLjRcECUhpRSlGgVTQQBaBZHQKNVAufVZs91fZQoaAZoCWgPQwjSVbq7jtBxQJSGlFKUaBVNGQFoFkdAo1XVLFn7HnV9lChoBmgJaA9DCFSobi4+snBAlIaUUpRoFU0HAWgWR0CjVz+MqBmPdX2UKGgGaAloD0MIdA0zNB7Eb0CUhpRSlGgVS/VoFkdAo1fxczImxHV9lChoBmgJaA9DCCDPLt/66G5AlIaUUpRoFU0NAWgWR0CjWNA0CRwIdX2UKGgGaAloD0MIfjoeMxABckCUhpRSlGgVTSQBaBZHQKNZv3NcGC91fZQoaAZoCWgPQwjsMvynm1JxQJSGlFKUaBVL8WgWR0CjWxEgGKQ8dX2UKGgGaAloD0MIQ+IeS5/IcECUhpRSlGgVTTcBaBZHQKNcC+/xlQN1fZQoaAZoCWgPQwjicrwCkTZxQJSGlFKUaBVNUwFoFkdAo10ioS+QEXV9lChoBmgJaA9DCH/Bbth2QHFAlIaUUpRoFU0eAWgWR0CjXpeenQ6ZdX2UKGgGaAloD0MIyVht/l/BSECUhpRSlGgVTQABaBZHQKNfTiWE9Md1fZQoaAZoCWgPQwj8qlyo/FdNQJSGlFKUaBVL2mgWR0CjX+e0PYnOdX2UKGgGaAloD0MIaauSyH4gcECUhpRSlGgVTXsBaBZHQKNhDAKv3al1fZQoaAZoCWgPQwhxkXu6esVwQJSGlFKUaBVNFAFoFkdAo2KZxJd0JXV9lChoBmgJaA9DCBVwz/MnaGxAlIaUUpRoFU0lAWgWR0CjY8/oA4n4dX2UKGgGaAloD0MIPkLNkKqbcUCUhpRSlGgVTQMBaBZHQKNkzoDgZTB1fZQoaAZoCWgPQwgqG9ZUFqtEQJSGlFKUaBVLymgWR0CjZYitihFmdX2UKGgGaAloD0MI0TyARX5QbkCUhpRSlGgVTRwBaBZHQKNntoM8YAN1fZQoaAZoCWgPQwiC597DpVNxQJSGlFKUaBVNAQFoFkdAo2jVUp/gBXV9lChoBmgJaA9DCCgNNQqJi3JAlIaUUpRoFU1CAWgWR0CjajUNjLB9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e985ace306c075f9aee9dee45af0865f99cbcfb9daa8548364a31f6fd4989de2
3
- size 147218
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac3f240c5e2fa8a8e7629b0c2756e055c2f605ecda7e896fd0ea82ba3e7bb3e3
3
+ size 146722
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.2
 
1
+ 1.7.0
ppo-LunarLander-v2/data CHANGED
@@ -3,20 +3,21 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fceacd1c550>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fceacd1c5e0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fceacd1c670>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fceacd1c700>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fceacd1c790>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fceacd1c820>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fceacd1c8b0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fceacd1c940>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fceacd1c9d0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fceacd1ca60>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fceacd1caf0>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fceacd92de0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -41,41 +42,41 @@
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 1015808,
46
  "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1670844798581235126,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACaIEb6fR8O7Ir+BtcHvKrMJuRM9NJOYNAAAgD8AAIA/ZhpkPXvOp7qYeO863PiTNeedkLoNNAm6AACAPwAAgD+aQQa8rumfumi62rbpP66xpGqduagU/DUAAIA/AACAP9NWfj5oZoU/3mO/PoQdpr7NtJs+2jHzPQAAAAAAAAAATZGlvSnIXboz37O3txyksuCtkbhgstM2AACAPwAAgD9mY2k9FEiDumZA57VtehAynCRBuxKDGTUAAIA/AACAP5oZwrt7xrK6Nc1ttBxHjq8KIp05bgGWMwAAgD8AAIA/ZjIivSk0drroNXS72gNDOHUOErtaYgo6AACAPwAAgD+auvA8j4IeuhZp2TTT0E0wQ4CCO975H7QAAIA/AACAP2aoK7wppB663Ow5tTPU9C51VIa74iBMNAAAgD8AAIA/ZnqiOxZzsz8HAyU+1iwjvqKOhbuvj5+7AAAAAAAAAADNj0K94cyTuk4U/jM1PCivTe4TuXtiqbMAAIA/AACAP0C8/L1H+KU/8k0cv9PFib7RIuq9xpxtvgAAAAAAAAAAzYiDPCnseLqxsYi6bDdrtqNvATuSEdo1AACAPwAAgD9mvpU9SfS5PxWl1T7alqu9wLN3PD88Mj4AAAAAAAAAAA39jL32gEC6wODgOs1XsTU4L2+7yrkEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrrfNVIjbZ0CUhpRSlIwBbJRN6AOMAXSUR0CQRNQdjoZAdX2UKGgGaAloD0MIqdiY1xEsY0CUhpRSlGgVTegDaBZHQJBGJTQ3PzF1fZQoaAZoCWgPQwixpx3+Gh5hQJSGlFKUaBVN6ANoFkdAkFPtZV4oqnV9lChoBmgJaA9DCDC6vDlcaGJAlIaUUpRoFU3oA2gWR0CQVJVZLZi/dX2UKGgGaAloD0MICft2EpEzYkCUhpRSlGgVTegDaBZHQJBUtdTo+wF1fZQoaAZoCWgPQwgQWDm0SJJlQJSGlFKUaBVN6ANoFkdAkFzH3cpLEnV9lChoBmgJaA9DCM0d/S/XlWRAlIaUUpRoFU3oA2gWR0CQXoQUHpr2dX2UKGgGaAloD0MIrwj+t5KlY0CUhpRSlGgVTegDaBZHQJBg0vUSZjR1fZQoaAZoCWgPQwgwnGuYoV1gQJSGlFKUaBVN6ANoFkdAkGYikXUH6nV9lChoBmgJaA9DCDPcgM+PamJAlIaUUpRoFU3oA2gWR0CQaP2RJVbSdX2UKGgGaAloD0MI/RadLDXqZECUhpRSlGgVTegDaBZHQJBpu4Ds+mp1fZQoaAZoCWgPQwgouFhRgztgQJSGlFKUaBVN6ANoFkdAkGy3hCMP0HV9lChoBmgJaA9DCF95kJ6iimNAlIaUUpRoFU3oA2gWR0CQksJRO1v3dX2UKGgGaAloD0MIDw2LUdd2ZECUhpRSlGgVTegDaBZHQJCTWAoXsPd1fZQoaAZoCWgPQwi+MQQAxwVmQJSGlFKUaBVN6ANoFkdAkJU5DVpblnV9lChoBmgJaA9DCNsV+mCZrWJAlIaUUpRoFU3oA2gWR0CQlc2MbWEsdX2UKGgGaAloD0MI02weh8FMXkCUhpRSlGgVTegDaBZHQJCbdVLi++N1fZQoaAZoCWgPQwhgI0kQrm5jQJSGlFKUaBVN6ANoFkdAkJzWvB7/oHV9lChoBmgJaA9DCLWjOEeda2VAlIaUUpRoFU3oA2gWR0CQqpiXY150dX2UKGgGaAloD0MIIo51cRuHZECUhpRSlGgVTegDaBZHQJCrP8zhxYJ1fZQoaAZoCWgPQwhzvALRE6NhQJSGlFKUaBVN6ANoFkdAkKtfJV81GnV9lChoBmgJaA9DCIqT+x0KMmNAlIaUUpRoFU3oA2gWR0CQsoiNsFdLdX2UKGgGaAloD0MIZjIcz2e6ZUCUhpRSlGgVTegDaBZHQJCzzNTtLL91fZQoaAZoCWgPQwg33bJDfG1jQJSGlFKUaBVN6ANoFkdAkLWEZBLPEHV9lChoBmgJaA9DCAPRkzKpmGRAlIaUUpRoFU3oA2gWR0CQudFzdUKidX2UKGgGaAloD0MIOGVuvhEIYkCUhpRSlGgVTegDaBZHQJC8IOWjXWh1fZQoaAZoCWgPQwglsg+yrHpjQJSGlFKUaBVN6ANoFkdAkLy0Q5FPSHV9lChoBmgJaA9DCOOo3ESt8mtAlIaUUpRoFU2aAmgWR0CQviR+jM3ZdX2UKGgGaAloD0MIndUCe0xOZUCUhpRSlGgVTegDaBZHQJC/KtDD0lJ1fZQoaAZoCWgPQwidhT3tcINnQJSGlFKUaBVN6ANoFkdAkOG0oWpIc3V9lChoBmgJaA9DCLNdoQ+W/mBAlIaUUpRoFU3oA2gWR0CQ4kNvOyE+dX2UKGgGaAloD0MIniPyXUo6ZUCUhpRSlGgVTegDaBZHQJDj+PeYUnJ1fZQoaAZoCWgPQwgJbM7BMxJiQJSGlFKUaBVN6ANoFkdAkOoXlr/KhnV9lChoBmgJaA9DCIiDhCjfWGBAlIaUUpRoFU3oA2gWR0CQ63isGPgfdX2UKGgGaAloD0MIiGh0B7HUX0CUhpRSlGgVTegDaBZHQJD5iZNO/L11fZQoaAZoCWgPQwjueJPfIidgQJSGlFKUaBVN6ANoFkdAkPotT5wfhnV9lChoBmgJaA9DCLIOR1fpnWVAlIaUUpRoFU3oA2gWR0CQ+k003wTedX2UKGgGaAloD0MIJT/iVyxhY0CUhpRSlGgVTegDaBZHQJEBqe2/i5x1fZQoaAZoCWgPQwjv4ZLjzmBiQJSGlFKUaBVN6ANoFkdAkQMI6jnFHnV9lChoBmgJaA9DCBe5p6u7Y2NAlIaUUpRoFU3oA2gWR0CRBO0Z3s5XdX2UKGgGaAloD0MIpkV9krtpYUCUhpRSlGgVTegDaBZHQJEJb+3pfQd1fZQoaAZoCWgPQwg8vVKWIQZjQJSGlFKUaBVN6ANoFkdAkQvS1Vo6CHV9lChoBmgJaA9DCBa/KazUC2VAlIaUUpRoFU3oA2gWR0CRDHRradtmdX2UKGgGaAloD0MI/PuMC4cOYkCUhpRSlGgVTegDaBZHQJEOAwHqu8t1fZQoaAZoCWgPQwjwTGiSWINdQJSGlFKUaBVN6ANoFkdAkQ8ZIUahpXV9lChoBmgJaA9DCFbzHJHvZmVAlIaUUpRoFU3oA2gWR0CRMthtLteEdX2UKGgGaAloD0MIgQabOo+3XkCUhpRSlGgVTegDaBZHQJEzaw8nuzB1fZQoaAZoCWgPQwgB9zx/2qFgQJSGlFKUaBVN6ANoFkdAkTUjWK/EfnV9lChoBmgJaA9DCJPIPsgyy2tAlIaUUpRoFU3mAmgWR0CROY6CDmKZdX2UKGgGaAloD0MI78nDQi1JYECUhpRSlGgVTegDaBZHQJE7KG/N7jV1fZQoaAZoCWgPQwh6NUBpKOZiQJSGlFKUaBVN6ANoFkdAkTxy3XqZ+nV9lChoBmgJaA9DCHC1TlyOnmBAlIaUUpRoFU3oA2gWR0CRSsYwIt17dX2UKGgGaAloD0MIDDuMSf+YY0CUhpRSlGgVTegDaBZHQJFK5jwx33Z1fZQoaAZoCWgPQwhVh9wMt9VvQJSGlFKUaBVNQwNoFkdAkUsofW+XaHV9lChoBmgJaA9DCEfp0r+kCmFAlIaUUpRoFU3oA2gWR0CRUe7UG3WndX2UKGgGaAloD0MI8ItLVdp4XkCUhpRSlGgVTegDaBZHQJFTUqwyIpJ1fZQoaAZoCWgPQwgcti3KbG5lQJSGlFKUaBVN6ANoFkdAkVniWu5jIHV9lChoBmgJaA9DCNLj9zb9GmZAlIaUUpRoFU3oA2gWR0CRXJSy+pOvdX2UKGgGaAloD0MIsCDNWLQAYUCUhpRSlGgVTegDaBZHQJFdR9AooeB1fZQoaAZoCWgPQwg2PL1SluFjQJSGlFKUaBVN6ANoFkdAkV8L8zhxYXV9lChoBmgJaA9DCAA49uy582FAlIaUUpRoFU3oA2gWR0CRYCnH/95ydX2UKGgGaAloD0MILVxWYbP4Y0CUhpRSlGgVTegDaBZHQJGEVwrDqGF1fZQoaAZoCWgPQwgAOzdtRgFhQJSGlFKUaBVN6ANoFkdAkYTqbONYKnV9lChoBmgJaA9DCEcCDTZ1rGBAlIaUUpRoFU3oA2gWR0CRhpxNZeRgdX2UKGgGaAloD0MIWYgOgSN1b0CUhpRSlGgVTdoBaBZHQJGKdblijL11fZQoaAZoCWgPQwgJjPUNzDhjQJSGlFKUaBVN6ANoFkdAkYr6sU7CBXV9lChoBmgJaA9DCOscA7LXAGNAlIaUUpRoFU3oA2gWR0CRjHxgy/KydX2UKGgGaAloD0MIa5p3nCI8YUCUhpRSlGgVTegDaBZHQJGNu3Zwn6V1fZQoaAZoCWgPQwjuBPuv8xdvQJSGlFKUaBVNJQNoFkdAkZZriuMdcXV9lChoBmgJaA9DCEazsn3IjWRAlIaUUpRoFU3oA2gWR0CRmZvmHP/rdX2UKGgGaAloD0MI16GakiwGY0CUhpRSlGgVTegDaBZHQJGZuXNTtLN1fZQoaAZoCWgPQwi4WbxYmF9kQJSGlFKUaBVN6ANoFkdAkZnhfOUt7XV9lChoBmgJaA9DCDDZeLDFl2JAlIaUUpRoFU3oA2gWR0CRn5YJ3PiUdX2UKGgGaAloD0MIz4dnCTJ0bUCUhpRSlGgVTfgCaBZHQJGfuPvKEFp1fZQoaAZoCWgPQwhBZJEm3tFhQJSGlFKUaBVN6ANoFkdAkao86/7BPHV9lChoBmgJaA9DCI8X0uEhRV1AlIaUUpRoFU3oA2gWR0CRqvsvZh8ZdX2UKGgGaAloD0MIbLQc6CHqZECUhpRSlGgVTegDaBZHQJGs5gnc+JR1fZQoaAZoCWgPQwinXUwzXfdkQJSGlFKUaBVN6ANoFkdAkdhhqKxcFHV9lChoBmgJaA9DCHizBu8rbGNAlIaUUpRoFU3oA2gWR0CR2P72tdRjdX2UKGgGaAloD0MI5Lop5TWLZkCUhpRSlGgVTegDaBZHQJHauA6Mir11fZQoaAZoCWgPQwjltKfknMllQJSGlFKUaBVN6ANoFkdAkd5tv0h/zHV9lChoBmgJaA9DCGiSWFLuiVxAlIaUUpRoFU3oA2gWR0CR3uwVj7Q+dX2UKGgGaAloD0MIOgg6WtWpa0CUhpRSlGgVTbwBaBZHQJHfVhqj8DV1fZQoaAZoCWgPQwjjHHV03CRiQJSGlFKUaBVN6ANoFkdAkeBVHvttynV9lChoBmgJaA9DCJoK8Ui8jGZAlIaUUpRoFU3oA2gWR0CR4VsdT5wgdX2UKGgGaAloD0MINuUK73JqbECUhpRSlGgVTYcDaBZHQJHndnjABT51fZQoaAZoCWgPQwhtVRLZB0NmQJSGlFKUaBVN6ANoFkdAkekqT0QK8nV9lChoBmgJaA9DCP/omzQNqF9AlIaUUpRoFU3oA2gWR0CR7AEhq0tzdX2UKGgGaAloD0MI31LOF3v/a0CUhpRSlGgVTZECaBZHQJHrtoIv8Il1fZQoaAZoCWgPQwjfbd44qbpgQJSGlFKUaBVN6ANoFkdAkewc+u/1x3V9lChoBmgJaA9DCPRtwVLdtHBAlIaUUpRoFU2PAWgWR0CR7cHKwIMSdX2UKGgGaAloD0MIEfxvJbvbb0CUhpRSlGgVTdgBaBZHQJHwqqGUOd51fZQoaAZoCWgPQwgZV1wcld9eQJSGlFKUaBVN6ANoFkdAkfFmNm16V3V9lChoBmgJaA9DCIVefxIfW2VAlIaUUpRoFU3oA2gWR0CR8XuOS4e+dX2UKGgGaAloD0MISGx3D1C+cECUhpRSlGgVTXsBaBZHQJHzF67dzn11fZQoaAZoCWgPQwgttd5vNFplQJSGlFKUaBVN6ANoFkdAkfplZX+2mnV9lChoBmgJaA9DCBLBOLh08m9AlIaUUpRoFU1CAmgWR0CSD/VHnU2DdX2UKGgGaAloD0MI56p5jsgEckCUhpRSlGgVTX8CaBZHQJIRXpmmLtN1fZQoaAZoCWgPQwhpp+ZyA6lvQJSGlFKUaBVNzQNoFkdAkhGX5N47inV9lChoBmgJaA9DCMCuJk9ZM25AlIaUUpRoFU2PAmgWR0CSEraQ3gk1dWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,7 +87,7 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1e965adc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1e965ae50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1e965aee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1e965af70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc1e9660040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc1e96600d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc1e9660160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1e96601f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc1e9660280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1e9660310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1e96603a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1e9660430>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc1e965e210>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
42
  "dtype": "int64",
43
  "_np_random": null
44
  },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1000448,
47
  "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1677412346034069281,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGYeVrs2CCK8y6neujYgAT0npjG81r0DtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
  },
66
  "_last_original_obs": null,
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.00044800000000000395,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPzc0ZafzQ0CUhpRSlIwBbJRL2YwBdJRHQKL6HkOI68x1fZQoaAZoCWgPQwjWcJF7un5DQJSGlFKUaBVL1mgWR0Ci+rm+0w8GdX2UKGgGaAloD0MIQNr/AGsRTkCUhpRSlGgVS9poFkdAovvqUPhAGHV9lChoBmgJaA9DCN0MN+Czz3FAlIaUUpRoFU0NAWgWR0Ci/LufmLccdX2UKGgGaAloD0MI6INlbGi7cUCUhpRSlGgVTS8BaBZHQKL9kHoHLRt1fZQoaAZoCWgPQwjUm1HzlSZzQJSGlFKUaBVNCAFoFkdAov5Y1k1/D3V9lChoBmgJaA9DCNrIdVPK2m1AlIaUUpRoFU0oAWgWR0Ci/8n6uW8idX2UKGgGaAloD0MIB7R0BZtfcECUhpRSlGgVTRYBaBZHQKMArxWkrPN1fZQoaAZoCWgPQwjfNH12QFByQJSGlFKUaBVL8GgWR0CjAVXC9AX3dX2UKGgGaAloD0MIkSv1LIhLb0CUhpRSlGgVTRMBaBZHQKMCIqQRwqB1fZQoaAZoCWgPQwireY7I9x9yQJSGlFKUaBVNEwFoFkdAowOV6E8JU3V9lChoBmgJaA9DCFYt6SgHYHFAlIaUUpRoFUvqaBZHQKMEQ6pYLb51fZQoaAZoCWgPQwiqgHuev4xwQJSGlFKUaBVL9GgWR0CjBPZa3ZwodX2UKGgGaAloD0MIvhb03hjKUkCUhpRSlGgVS/JoFkdAowWgrpaA4HV9lChoBmgJaA9DCC4EOShh9EtAlIaUUpRoFUvHaBZHQKMGzbVSXMR1fZQoaAZoCWgPQwj+0w0U+CJxQJSGlFKUaBVNDQFoFkdAowelTLns9nV9lChoBmgJaA9DCEuxo3Gog21AlIaUUpRoFU0YAWgWR0CjCIEhaC+UdX2UKGgGaAloD0MIUoGTbSA2ckCUhpRSlGgVS+poFkdAowlxS1mapnV9lChoBmgJaA9DCIdPOpFgim9AlIaUUpRoFU0YAWgWR0CjC3QPAfuDdX2UKGgGaAloD0MImPxP/q5AcUCUhpRSlGgVS/loFkdAowxzAUL2H3V9lChoBmgJaA9DCHnletuMYnFAlIaUUpRoFUvtaBZHQKMNaWrwOON1fZQoaAZoCWgPQwgQJVryuKNxQJSGlFKUaBVL7GgWR0CjDm/QKKHgdX2UKGgGaAloD0MIj1Tf+UVhb0CUhpRSlGgVTRgBaBZHQKMQpX6qKgt1fZQoaAZoCWgPQwgM5US7CtxRQJSGlFKUaBVL1mgWR0CjEXr6tT1kdX2UKGgGaAloD0MIFeRnI9drR0CUhpRSlGgVS8ZoFkdAoxJUPWhAW3V9lChoBmgJaA9DCLVRnQ5kDHBAlIaUUpRoFU0uAWgWR0CjE0MMy8BddX2UKGgGaAloD0MIdavnpLf9cUCUhpRSlGgVTSUBaBZHQKMUtE9dNWV1fZQoaAZoCWgPQwgZWTLHciNvQJSGlFKUaBVNKwFoFkdAoxWM9t/FznV9lChoBmgJaA9DCEVHcvkPFHFAlIaUUpRoFU0TAWgWR0CjFmRlQMx5dX2UKGgGaAloD0MIWixF8lUDcECUhpRSlGgVTSkBaBZHQKMXREfDDTB1fZQoaAZoCWgPQwhCXg8mxY81QJSGlFKUaBVLxWgWR0CjGHYBNmDldX2UKGgGaAloD0MIURVT6SdzcECUhpRSlGgVTa0BaBZHQKMZ73QD3dt1fZQoaAZoCWgPQwiZ9PdSeIRFQJSGlFKUaBVLumgWR0CjGnFJYkmhdX2UKGgGaAloD0MI1LZhFIQtcUCUhpRSlGgVS/1oFkdAoxvymXPZ7HV9lChoBmgJaA9DCGhBKO/j/EdAlIaUUpRoFUuraBZHQKMcbxdY4hl1fZQoaAZoCWgPQwjDnKBNjnlwQJSGlFKUaBVNHQFoFkdAox1F74SHunV9lChoBmgJaA9DCIyjchO1hEZAlIaUUpRoFUvUaBZHQKMd2FAVwgl1fZQoaAZoCWgPQwghBrr2RYZyQJSGlFKUaBVNHwFoFkdAox6omw7kn3V9lChoBmgJaA9DCLaF56Vi/zRAlIaUUpRoFUvbaBZHQKMf6nBLwnZ1fZQoaAZoCWgPQwhUck7sYShxQJSGlFKUaBVNDAFoFkdAoyCzt3OfNHV9lChoBmgJaA9DCEnZImn3m3NAlIaUUpRoFU0jAWgWR0CjIY07jkuIdX2UKGgGaAloD0MIYW73ct9fcUCUhpRSlGgVTRABaBZHQKMiUWdmQKd1fZQoaAZoCWgPQwhET8qkBmNvQJSGlFKUaBVNBAFoFkdAoyO53qzJIXV9lChoBmgJaA9DCLyvyoXK10JAlIaUUpRoFUvcaBZHQKMkYRpUPxx1fZQoaAZoCWgPQwh1HaopSc9sQJSGlFKUaBVNIAFoFkdAoyU6xX4j8nV9lChoBmgJaA9DCHGRe7o6a29AlIaUUpRoFU0rAWgWR0CjJvIqbz9TdX2UKGgGaAloD0MIOq+xS1RPckCUhpRSlGgVTSQBaBZHQKMoEtz0Yj11fZQoaAZoCWgPQwguPZrqyUVyQJSGlFKUaBVNFgFoFkdAoykbZ13dK3V9lChoBmgJaA9DCAHChxItaTBAlIaUUpRoFUvRaBZHQKMp5O58Sf11fZQoaAZoCWgPQwgYIxKFFiduQJSGlFKUaBVNBgFoFkdAoyvaaRZED3V9lChoBmgJaA9DCKDAO/n08EVAlIaUUpRoFUvyaBZHQKMs28274BV1fZQoaAZoCWgPQwgAdJgvb1NwQJSGlFKUaBVNMgFoFkdAoy49jTa0yHV9lChoBmgJaA9DCIPg8e2dWHJAlIaUUpRoFUv8aBZHQKMvVvMr3Cd1fZQoaAZoCWgPQwgK1jibjlxyQJSGlFKUaBVL62gWR0CjMPYKQaJidX2UKGgGaAloD0MIuVFkrSF9b0CUhpRSlGgVTSoBaBZHQKMx328qWkd1fZQoaAZoCWgPQwgt6pPcYd1tQJSGlFKUaBVNNwFoFkdAozLJ2MbWE3V9lChoBmgJaA9DCLaGUnsRBXJAlIaUUpRoFU06AWgWR0CjM7H7xd6cdX2UKGgGaAloD0MI2EroLsnAckCUhpRSlGgVTRkBaBZHQKM1JhP0qYt1fZQoaAZoCWgPQwjGM2jo3wZxQJSGlFKUaBVNaQFoFkdAozZN7WuoxnV9lChoBmgJaA9DCPNYMzLIYm5AlIaUUpRoFU0ZAWgWR0CjNyfSQYDUdX2UKGgGaAloD0MImBb1Se5BcUCUhpRSlGgVTSMBaBZHQKM4qeQMhHN1fZQoaAZoCWgPQwgjZYuk3a1bQJSGlFKUaBVN6ANoFkdAoz3KGQCCBnV9lChoBmgJaA9DCP+VlSZlJ3JAlIaUUpRoFU0+AWgWR0CjPtmMOwxGdX2UKGgGaAloD0MIogp/hreGcECUhpRSlGgVTUIBaBZHQKM/6xJNCZ51fZQoaAZoCWgPQwj3kPC9P/RuQJSGlFKUaBVNJQFoFkdAo0F7cuanaXV9lChoBmgJaA9DCDjZBu7Ak29AlIaUUpRoFU1DAWgWR0CjQndi+cpcdX2UKGgGaAloD0MIv9TPm0pBcUCUhpRSlGgVTQYBaBZHQKNDP6cAiml1fZQoaAZoCWgPQwiDhv4J7t5xQJSGlFKUaBVNDAFoFkdAo0QHlyR0VHV9lChoBmgJaA9DCMx6MZSTpmxAlIaUUpRoFU1NAWgWR0CjRiODjBEbdX2UKGgGaAloD0MIBz9xAP3hb0CUhpRSlGgVTR0BaBZHQKNHR84Pwux1fZQoaAZoCWgPQwjIef8fJ0RPQJSGlFKUaBVL52gWR0CjSCt0/4ZddX2UKGgGaAloD0MIhgK2gxEwcUCUhpRSlGgVTawBaBZHQKNLLh+fAbh1fZQoaAZoCWgPQwh1r5P68i5yQJSGlFKUaBVNQQFoFkdAo0yUAWBSUHV9lChoBmgJaA9DCE7yI37FuVFAlIaUUpRoFUvGaBZHQKNNXpoK2KF1fZQoaAZoCWgPQwgqdF5jl3JwQJSGlFKUaBVNcwFoFkdAo07MpTdcjnV9lChoBmgJaA9DCHAH6pQH/XBAlIaUUpRoFU1HAWgWR0CjUFtnwob5dX2UKGgGaAloD0MI9fbnouEicUCUhpRSlGgVS/VoFkdAo1EbxwyZa3V9lChoBmgJaA9DCIfEPZZ+pXBAlIaUUpRoFU0aAWgWR0CjUf4+bExZdX2UKGgGaAloD0MI0xVsI943ckCUhpRSlGgVS+5oFkdAo1NYxDb8FnV9lChoBmgJaA9DCN6rVib81G5AlIaUUpRoFU0kAWgWR0CjVD5iNKh+dX2UKGgGaAloD0MILT4FwLjRcECUhpRSlGgVTQQBaBZHQKNVAufVZs91fZQoaAZoCWgPQwjSVbq7jtBxQJSGlFKUaBVNGQFoFkdAo1XVLFn7HnV9lChoBmgJaA9DCFSobi4+snBAlIaUUpRoFU0HAWgWR0CjVz+MqBmPdX2UKGgGaAloD0MIdA0zNB7Eb0CUhpRSlGgVS/VoFkdAo1fxczImxHV9lChoBmgJaA9DCCDPLt/66G5AlIaUUpRoFU0NAWgWR0CjWNA0CRwIdX2UKGgGaAloD0MIfjoeMxABckCUhpRSlGgVTSQBaBZHQKNZv3NcGC91fZQoaAZoCWgPQwjsMvynm1JxQJSGlFKUaBVL8WgWR0CjWxEgGKQ8dX2UKGgGaAloD0MIQ+IeS5/IcECUhpRSlGgVTTcBaBZHQKNcC+/xlQN1fZQoaAZoCWgPQwjicrwCkTZxQJSGlFKUaBVNUwFoFkdAo10ioS+QEXV9lChoBmgJaA9DCH/Bbth2QHFAlIaUUpRoFU0eAWgWR0CjXpeenQ6ZdX2UKGgGaAloD0MIyVht/l/BSECUhpRSlGgVTQABaBZHQKNfTiWE9Md1fZQoaAZoCWgPQwj8qlyo/FdNQJSGlFKUaBVL2mgWR0CjX+e0PYnOdX2UKGgGaAloD0MIaauSyH4gcECUhpRSlGgVTXsBaBZHQKNhDAKv3al1fZQoaAZoCWgPQwhxkXu6esVwQJSGlFKUaBVNFAFoFkdAo2KZxJd0JXV9lChoBmgJaA9DCBVwz/MnaGxAlIaUUpRoFU0lAWgWR0CjY8/oA4n4dX2UKGgGaAloD0MIPkLNkKqbcUCUhpRSlGgVTQMBaBZHQKNkzoDgZTB1fZQoaAZoCWgPQwgqG9ZUFqtEQJSGlFKUaBVLymgWR0CjZYitihFmdX2UKGgGaAloD0MI0TyARX5QbkCUhpRSlGgVTRwBaBZHQKNntoM8YAN1fZQoaAZoCWgPQwiC597DpVNxQJSGlFKUaBVNAQFoFkdAo2jVUp/gBXV9lChoBmgJaA9DCCgNNQqJi3JAlIaUUpRoFU1CAWgWR0CjajUNjLB9dWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 3908,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9be982b50a59d6cc5fdcde252e4d437be105f9c4ea93a1590d3c91b6a6a16bc0
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a219ef0f640a9251d5a5e4bee516b5f3a73e961c00d5b656d2f4dbb96fc6d87e
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:792f92e9fe0bad2f5ea6df632d2162f5d0e46e35f2176f7ea48d367817086e04
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2891136d866dc3cdfd31c38d18d995cd8f1372e0a1dd819c23365eab7c0bb41d
3
+ size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
- Python: 3.8.16
3
- Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu116
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 250.16868282587052, "std_reward": 23.414609983192555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T12:24:33.519264"}
 
1
+ {"mean_reward": 274.1150697445852, "std_reward": 17.588413724704814, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T12:57:49.426948"}