|
import json |
|
import os |
|
|
|
import fsspec |
|
import hydra |
|
import lightning as L |
|
import omegaconf |
|
import rich.syntax |
|
import rich.tree |
|
import torch |
|
from tqdm import tqdm |
|
from datasets import load_from_disk |
|
import pdb |
|
|
|
import classifier |
|
import dataloader |
|
import diffusion |
|
import eval_utils |
|
import utils |
|
|
|
omegaconf.OmegaConf.register_new_resolver( |
|
'cwd', os.getcwd) |
|
omegaconf.OmegaConf.register_new_resolver( |
|
'device_count', torch.cuda.device_count) |
|
omegaconf.OmegaConf.register_new_resolver( |
|
'eval', eval) |
|
omegaconf.OmegaConf.register_new_resolver( |
|
'div_up', lambda x, y: (x + y - 1) // y) |
|
omegaconf.OmegaConf.register_new_resolver( |
|
'if_then_else', |
|
lambda condition, x, y: x if condition else y |
|
) |
|
|
|
|
|
def _load_from_checkpoint(config, tokenizer): |
|
if 'hf' in config.backbone: |
|
return diffusion.Diffusion( |
|
config, tokenizer=tokenizer).to('cuda') |
|
|
|
return diffusion.Diffusion.load_from_checkpoint( |
|
config.eval.checkpoint_path, |
|
tokenizer=tokenizer, |
|
config=config, logger=False).to('cuda') |
|
|
|
|
|
@L.pytorch.utilities.rank_zero_only |
|
def _print_config( |
|
config: omegaconf.DictConfig, |
|
resolve: bool = True, |
|
save_cfg: bool = True) -> None: |
|
"""Prints content of DictConfig using Rich library and its tree structure. |
|
|
|
Args: |
|
config (DictConfig): Configuration composed by Hydra. |
|
resolve (bool): Whether to resolve reference fields of DictConfig. |
|
save_cfg (bool): Whether to save the configuration tree to a file. |
|
""" |
|
|
|
style = 'dim' |
|
tree = rich.tree.Tree('CONFIG', style=style, guide_style=style) |
|
|
|
fields = config.keys() |
|
for field in fields: |
|
branch = tree.add(field, style=style, guide_style=style) |
|
|
|
config_section = config.get(field) |
|
branch_content = str(config_section) |
|
if isinstance(config_section, omegaconf.DictConfig): |
|
branch_content = omegaconf.OmegaConf.to_yaml( |
|
config_section, resolve=resolve) |
|
|
|
branch.add(rich.syntax.Syntax(branch_content, 'yaml')) |
|
rich.print(tree) |
|
if save_cfg: |
|
with fsspec.open( |
|
'{}/config_tree.txt'.format( |
|
config.checkpointing.save_dir), 'w') as fp: |
|
rich.print(tree, file=fp) |
|
|
|
|
|
@L.pytorch.utilities.rank_zero_only |
|
def _print_batch(train_ds, valid_ds, tokenizer, k=64): |
|
for dl_type, dl in [ |
|
('train', train_ds), ('valid', valid_ds)]: |
|
print(f'Printing {dl_type} dataloader batch.') |
|
batch = next(iter(dl)) |
|
print('Batch input_ids.shape', batch['input_ids'].shape) |
|
first = batch['input_ids'][0, :k] |
|
last = batch['input_ids'][0, -k:] |
|
print(f'First {k} tokens:', tokenizer.decode(first)) |
|
print('ids:', first) |
|
print(f'Last {k} tokens:', tokenizer.decode(last)) |
|
print('ids:', last) |
|
|
|
|
|
def _train(config, logger, tokenizer, |
|
train_classifier=False): |
|
logger.info('Starting Training.') |
|
wandb_logger = None |
|
if config.get('wandb', None) is not None: |
|
wandb_logger = L.pytorch.loggers.WandbLogger( |
|
config=omegaconf.OmegaConf.to_object(config), |
|
** config.wandb) |
|
|
|
if (config.checkpointing.resume_from_ckpt |
|
and config.checkpointing.resume_ckpt_path is not None |
|
and utils.fsspec_exists( |
|
config.checkpointing.resume_ckpt_path)): |
|
ckpt_path = config.checkpointing.resume_ckpt_path |
|
else: |
|
ckpt_path = None |
|
|
|
|
|
callbacks = [] |
|
if 'callbacks' in config: |
|
for _, callback in config.callbacks.items(): |
|
callbacks.append(hydra.utils.instantiate(callback)) |
|
|
|
|
|
|
|
train_dataset = load_from_disk('/home/tc415/discrete-diffusion-guidance/dataset/3000_400k/train') |
|
val_dataset = load_from_disk('/home/tc415/discrete-diffusion-guidance/dataset/3000_400k/val') |
|
test_dataset = load_from_disk('/home/tc415/discrete-diffusion-guidance/dataset/3000_400k/test') |
|
|
|
data_module = dataloader.CustomDataModule(train_dataset, val_dataset, test_dataset, tokenizer, config, batch_size=config.loader.batch_size) |
|
train_ds = data_module.train_dataloader() |
|
valid_ds = data_module.val_dataloader() |
|
|
|
if not config.is_vision: |
|
_print_batch(train_ds, valid_ds, tokenizer) |
|
|
|
if train_classifier: |
|
|
|
|
|
|
|
if getattr(config, 'is_pplm_classifier', False): |
|
pretrained_model = _load_from_checkpoint( |
|
config, tokenizer) |
|
if (getattr(config.classifier_model, 'use_encoder_ema', True) |
|
and pretrained_model.ema): |
|
pretrained_model.load_ema_params() |
|
pretrained_backbone = pretrained_model.backbone |
|
|
|
if hasattr(pretrained_backbone, 'output_layer'): |
|
delattr(pretrained_backbone, 'output_layer') |
|
if hasattr(pretrained_backbone, 'model.lm_head'): |
|
delattr(pretrained_backbone, 'model.lm_head') |
|
if getattr(config.classifier_model, 'freeze_encoder', True): |
|
for param in pretrained_backbone.parameters(): |
|
param.requires_grad = False |
|
else: |
|
pretrained_backbone = None |
|
|
|
model = classifier.Classifier( |
|
config, |
|
tokenizer=valid_ds.tokenizer, |
|
pretrained_backbone=pretrained_backbone) |
|
else: |
|
model = diffusion.Diffusion( |
|
config, tokenizer=tokenizer) |
|
|
|
|
|
|
|
trainer = hydra.utils.instantiate( |
|
config.trainer, |
|
default_root_dir=os.getcwd(), |
|
callbacks=callbacks, |
|
strategy=hydra.utils.instantiate(config.strategy), |
|
logger=wandb_logger) |
|
trainer.fit(model, train_ds, valid_ds, ckpt_path=ckpt_path) |
|
|
|
|
|
def _gen_ppl_eval(config, tokenizer): |
|
pretrained = _load_from_checkpoint( |
|
config=config, tokenizer=tokenizer) |
|
pretrained.eval() |
|
samples = [] |
|
for _ in tqdm(range(config.sampling.num_sample_batches), |
|
desc='Gen. batches', leave=False): |
|
sample = pretrained.sample() |
|
samples.extend( |
|
pretrained.tokenizer.batch_decode(sample)) |
|
|
|
|
|
|
|
tok_bos_token = tokenizer.bos_token if tokenizer.bos_token is not None else tokenizer.cls_token |
|
samples = [ |
|
s.replace('[PAD]', '').replace('[MASK]', '').strip() |
|
for s in samples |
|
] |
|
|
|
samples = [ |
|
s if s.startswith(tok_bos_token) else f"{tok_bos_token} {s}" |
|
for s in samples |
|
] |
|
del pretrained |
|
print(f"Generated {len(samples)} samples.") |
|
|
|
generative_ppl = eval_utils.compute_generative_ppl( |
|
samples, |
|
eval_model_name_or_path=config.eval.generative_ppl_model_name_or_path, |
|
gen_ppl_eval_batch_size=8, |
|
max_length=config.model.length) |
|
tokens = tokenizer.batch_encode_plus( |
|
samples, |
|
return_tensors='pt', |
|
add_special_tokens=False, |
|
max_length=config.model.length, |
|
padding='max_length', |
|
truncation=True)['input_ids'] |
|
_, counts = torch.unique( |
|
torch.tensor(tokens), return_counts=True, sorted=False) |
|
entropy = torch.special.entr( |
|
counts.float() / counts.sum()).sum().item() |
|
with open(config.eval.generated_samples_path, 'w') as f: |
|
json.dump({ |
|
'generative_ppl': generative_ppl, |
|
'entropy': entropy, |
|
'generated_seqs': samples, |
|
}, |
|
f, indent=4) |
|
print(f"Entropy: {entropy:0.3f}") |
|
print(f"Gen. PPL: {generative_ppl:0.3f}") |
|
|
|
|
|
def _ppl_eval(config, tokenizer): |
|
print(f"Evaluating perplexity on {config.data.valid}.") |
|
pretrained = _load_from_checkpoint( |
|
config=config, tokenizer=tokenizer) |
|
pretrained.eval() |
|
if not config.eval.disable_ema: |
|
pretrained.load_ema_params() |
|
|
|
_, valid_ds = dataloader.get_dataloaders( |
|
config, tokenizer, skip_train=True, valid_seed=config.seed) |
|
ppl = eval_utils.compute_ppl(pretrained, valid_ds) |
|
print(f"PPL: {ppl:0.3f}") |
|
|
|
|
|
@hydra.main(version_base=None, config_path='configs', |
|
config_name='config') |
|
def main(config): |
|
"""Main entry point for training.""" |
|
L.seed_everything(config.seed) |
|
_print_config(config, resolve=True, save_cfg=True) |
|
|
|
logger = utils.get_logger(__name__) |
|
tokenizer = dataloader.get_tokenizer(config) |
|
|
|
if config.mode == 'gen_ppl_eval': |
|
_gen_ppl_eval(config, tokenizer) |
|
elif config.mode == 'ppl_eval': |
|
_ppl_eval(config, tokenizer) |
|
elif 'train' in config.mode: |
|
_train(config, logger, tokenizer, |
|
train_classifier='classifier' in config.mode) |
|
else: |
|
raise NotImplementedError(f"Mode {config.mode} not implemented.") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|