File size: 8,547 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import json
import os
import fsspec
import hydra
import lightning as L
import omegaconf
import rich.syntax
import rich.tree
import torch
from tqdm import tqdm
from datasets import load_from_disk
import pdb
import classifier
import dataloader
import diffusion
import eval_utils
import utils
omegaconf.OmegaConf.register_new_resolver(
'cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver(
'device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver(
'eval', eval)
omegaconf.OmegaConf.register_new_resolver(
'div_up', lambda x, y: (x + y - 1) // y)
omegaconf.OmegaConf.register_new_resolver(
'if_then_else',
lambda condition, x, y: x if condition else y
)
def _load_from_checkpoint(config, tokenizer):
if 'hf' in config.backbone:
return diffusion.Diffusion(
config, tokenizer=tokenizer).to('cuda')
return diffusion.Diffusion.load_from_checkpoint(
config.eval.checkpoint_path,
tokenizer=tokenizer,
config=config, logger=False).to('cuda')
@L.pytorch.utilities.rank_zero_only
def _print_config(
config: omegaconf.DictConfig,
resolve: bool = True,
save_cfg: bool = True) -> None:
"""Prints content of DictConfig using Rich library and its tree structure.
Args:
config (DictConfig): Configuration composed by Hydra.
resolve (bool): Whether to resolve reference fields of DictConfig.
save_cfg (bool): Whether to save the configuration tree to a file.
"""
style = 'dim'
tree = rich.tree.Tree('CONFIG', style=style, guide_style=style)
fields = config.keys()
for field in fields:
branch = tree.add(field, style=style, guide_style=style)
config_section = config.get(field)
branch_content = str(config_section)
if isinstance(config_section, omegaconf.DictConfig):
branch_content = omegaconf.OmegaConf.to_yaml(
config_section, resolve=resolve)
branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
rich.print(tree)
if save_cfg:
with fsspec.open(
'{}/config_tree.txt'.format(
config.checkpointing.save_dir), 'w') as fp:
rich.print(tree, file=fp)
@L.pytorch.utilities.rank_zero_only
def _print_batch(train_ds, valid_ds, tokenizer, k=64):
for dl_type, dl in [
('train', train_ds), ('valid', valid_ds)]:
print(f'Printing {dl_type} dataloader batch.')
batch = next(iter(dl))
print('Batch input_ids.shape', batch['input_ids'].shape)
first = batch['input_ids'][0, :k]
last = batch['input_ids'][0, -k:]
print(f'First {k} tokens:', tokenizer.decode(first))
print('ids:', first)
print(f'Last {k} tokens:', tokenizer.decode(last))
print('ids:', last)
def _train(config, logger, tokenizer,
train_classifier=False):
logger.info('Starting Training.')
wandb_logger = None
if config.get('wandb', None) is not None:
wandb_logger = L.pytorch.loggers.WandbLogger(
config=omegaconf.OmegaConf.to_object(config),
** config.wandb)
if (config.checkpointing.resume_from_ckpt
and config.checkpointing.resume_ckpt_path is not None
and utils.fsspec_exists(
config.checkpointing.resume_ckpt_path)):
ckpt_path = config.checkpointing.resume_ckpt_path
else:
ckpt_path = None
# Lightning callbacks
callbacks = []
if 'callbacks' in config:
for _, callback in config.callbacks.items():
callbacks.append(hydra.utils.instantiate(callback))
# train_ds, valid_ds = dataloader.get_dataloaders(
# config, tokenizer)
train_dataset = load_from_disk('/home/tc415/discrete-diffusion-guidance/dataset/3000_400k/train')
val_dataset = load_from_disk('/home/tc415/discrete-diffusion-guidance/dataset/3000_400k/val')
test_dataset = load_from_disk('/home/tc415/discrete-diffusion-guidance/dataset/3000_400k/test')
data_module = dataloader.CustomDataModule(train_dataset, val_dataset, test_dataset, tokenizer, config, batch_size=config.loader.batch_size)
train_ds = data_module.train_dataloader()
valid_ds = data_module.val_dataloader()
if not config.is_vision:
_print_batch(train_ds, valid_ds, tokenizer)
if train_classifier:
# This param indicates classifier will be used for
# PPLM / NOS-style guidance
# (see: https://arxiv.org/abs/2305.20009).
if getattr(config, 'is_pplm_classifier', False):
pretrained_model = _load_from_checkpoint(
config, tokenizer)
if (getattr(config.classifier_model, 'use_encoder_ema', True)
and pretrained_model.ema):
pretrained_model.load_ema_params()
pretrained_backbone = pretrained_model.backbone
# Remove the last layer for the classifier
if hasattr(pretrained_backbone, 'output_layer'): #DiT
delattr(pretrained_backbone, 'output_layer')
if hasattr(pretrained_backbone, 'model.lm_head'): #DiMamba
delattr(pretrained_backbone, 'model.lm_head')
if getattr(config.classifier_model, 'freeze_encoder', True):
for param in pretrained_backbone.parameters():
param.requires_grad = False
else:
pretrained_backbone = None
model = classifier.Classifier(
config,
tokenizer=valid_ds.tokenizer,
pretrained_backbone=pretrained_backbone)
else:
model = diffusion.Diffusion(
config, tokenizer=tokenizer)
# model = diffusion.Diffusion(
# config, tokenizer=valid_ds.tokenizer)
trainer = hydra.utils.instantiate(
config.trainer,
default_root_dir=os.getcwd(),
callbacks=callbacks,
strategy=hydra.utils.instantiate(config.strategy),
logger=wandb_logger)
trainer.fit(model, train_ds, valid_ds, ckpt_path=ckpt_path)
def _gen_ppl_eval(config, tokenizer):
pretrained = _load_from_checkpoint(
config=config, tokenizer=tokenizer)
pretrained.eval()
samples = []
for _ in tqdm(range(config.sampling.num_sample_batches),
desc='Gen. batches', leave=False):
sample = pretrained.sample()
samples.extend(
pretrained.tokenizer.batch_decode(sample))
# Replace CLS token with BOS token (if applicable) and
# remove padding and mask tokens
tok_bos_token = tokenizer.bos_token if tokenizer.bos_token is not None else tokenizer.cls_token
samples = [
s.replace('[PAD]', '').replace('[MASK]', '').strip()
for s in samples
]
# Add BOS token to the beginning of each sample (if not already present)
samples = [
s if s.startswith(tok_bos_token) else f"{tok_bos_token} {s}"
for s in samples
]
del pretrained # free up space for eval
print(f"Generated {len(samples)} samples.")
generative_ppl = eval_utils.compute_generative_ppl(
samples,
eval_model_name_or_path=config.eval.generative_ppl_model_name_or_path,
gen_ppl_eval_batch_size=8,
max_length=config.model.length)
tokens = tokenizer.batch_encode_plus(
samples,
return_tensors='pt',
add_special_tokens=False,
max_length=config.model.length,
padding='max_length',
truncation=True)['input_ids']
_, counts = torch.unique(
torch.tensor(tokens), return_counts=True, sorted=False)
entropy = torch.special.entr(
counts.float() / counts.sum()).sum().item()
with open(config.eval.generated_samples_path, 'w') as f:
json.dump({
'generative_ppl': generative_ppl,
'entropy': entropy,
'generated_seqs': samples,
},
f, indent=4) # type: ignore
print(f"Entropy: {entropy:0.3f}")
print(f"Gen. PPL: {generative_ppl:0.3f}")
def _ppl_eval(config, tokenizer):
print(f"Evaluating perplexity on {config.data.valid}.")
pretrained = _load_from_checkpoint(
config=config, tokenizer=tokenizer)
pretrained.eval()
if not config.eval.disable_ema:
pretrained.load_ema_params()
_, valid_ds = dataloader.get_dataloaders(
config, tokenizer, skip_train=True, valid_seed=config.seed)
ppl = eval_utils.compute_ppl(pretrained, valid_ds)
print(f"PPL: {ppl:0.3f}")
@hydra.main(version_base=None, config_path='configs',
config_name='config')
def main(config):
"""Main entry point for training."""
L.seed_everything(config.seed)
_print_config(config, resolve=True, save_cfg=True)
logger = utils.get_logger(__name__)
tokenizer = dataloader.get_tokenizer(config)
if config.mode == 'gen_ppl_eval':
_gen_ppl_eval(config, tokenizer)
elif config.mode == 'ppl_eval':
_ppl_eval(config, tokenizer)
elif 'train' in config.mode:
_train(config, logger, tokenizer,
train_classifier='classifier' in config.mode)
else:
raise NotImplementedError(f"Mode {config.mode} not implemented.")
if __name__ == '__main__':
main()
|