muPPIt / train.py
AlienChen's picture
Create train.py
ed7b048 verified
raw
history blame
16.7 kB
import pdb
from pytorch_lightning.strategies import DDPStrategy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, DistributedSampler, BatchSampler, Sampler
from datasets import load_from_disk
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, \
Timer, TQDMProgressBar, LearningRateMonitor, StochasticWeightAveraging, GradientAccumulationScheduler
from pytorch_lightning.loggers import WandbLogger
from torch.optim.lr_scheduler import _LRScheduler
from transformers.optimization import get_cosine_schedule_with_warmup
from argparse import ArgumentParser
import os
import uuid
import esm
import numpy as np
import torch.distributed as dist
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer, get_cosine_schedule_with_warmup
# from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from torch.optim import Adam, AdamW
from sklearn.metrics import roc_auc_score, f1_score, matthews_corrcoef
import gc
from models.graph import ProteinGraph
from models.modules_vec import IntraGraphAttention, DiffEmbeddingLayer, MIM, CrossGraphAttention
os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
def collate_fn(batch):
# Unpack the batch
binders = []
mutants = []
wildtypes = []
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
for b in batch:
binders.append(torch.tensor(b['binder_tokens']).squeeze(0)) # shape: 1*L1 -> L1
mutants.append(torch.tensor(b['mutant_tokens']).squeeze(0)) # shape: 1*L2 -> L2
wildtypes.append(torch.tensor(b['wildtype_tokens']).squeeze(0)) # shape: 1*L3 -> L3
# Collate the tensors using torch's pad_sequence
binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)
mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)
wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)
# Return the collated batch
return {
'binder_input_ids': binder_input_ids.int(),
'mutant_input_ids': mutant_input_ids.int(),
'wildtype_input_ids': wildtype_input_ids.int(),
}
class LengthAwareDistributedSampler(DistributedSampler):
def __init__(self, dataset, key, batch_size, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.dataset = dataset
self.key = key
self.batch_size = batch_size
# Sort indices by the length of the mutant sequence
self.indices = sorted(range(len(self.dataset)), key=lambda i: len(self.dataset[i][key]))
def __iter__(self):
# Divide indices among replicas
indices = self.indices[self.rank::self.num_replicas]
if self.shuffle:
torch.manual_seed(self.epoch)
indices = torch.randperm(len(indices)).tolist()
# Yield indices in batches
for i in range(0, len(indices), self.batch_size):
yield indices[i:i+self.batch_size]
def __len__(self):
return len(self.indices) // self.num_replicas
def set_epoch(self, epoch):
self.epoch = epoch
class CustomDataModule(pl.LightningDataModule):
def __init__(self, train_dataset, val_dataset, tokenizer, batch_size: int = 128):
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.batch_size = batch_size
self.tokenizer = tokenizer
def train_dataloader(self):
# batch_sampler = LengthAwareDistributedSampler(self.train_dataset, 'mutant_tokens', self.batch_size)
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, collate_fn=collate_fn,
num_workers=8, pin_memory=True)
def val_dataloader(self):
# batch_sampler = LengthAwareDistributedSampler(self.val_dataset, 'mutant_tokens', self.batch_size)
return DataLoader(self.val_dataset, batch_size=self.batch_size, collate_fn=collate_fn, num_workers=8,
pin_memory=True)
def setup(self, stage=None):
if stage == 'test' or stage is None:
pass
class CosineAnnealingWithWarmup(_LRScheduler):
def __init__(self, optimizer, warmup_steps, total_steps, base_lr, max_lr, min_lr, last_epoch=-1):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.base_lr = base_lr
self.max_lr = max_lr
self.min_lr = min_lr
super(CosineAnnealingWithWarmup, self).__init__(optimizer, last_epoch)
print(f"SELF BASE LRS = {self.base_lrs}")
def get_lr(self):
if self.last_epoch < self.warmup_steps:
# Linear warmup phase from base_lr to max_lr
return [self.base_lr + (self.max_lr - self.base_lr) * (self.last_epoch / self.warmup_steps) for base_lr in self.base_lrs]
# Cosine annealing phase from max_lr to min_lr
progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
cosine_decay = 0.5 * (1 + np.cos(np.pi * progress))
decayed_lr = self.min_lr + (self.max_lr - self.min_lr) * cosine_decay
return [decayed_lr for base_lr in self.base_lrs]
class muPPIt(pl.LightningModule):
def __init__(self, d_node, d_edge, d_cross_edge, d_position, num_heads,
num_intra_layers, num_mim_layers, num_cross_layers, lr, delta=1.0):
super(muPPIt, self).__init__()
self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
for param in self.esm.parameters():
param.requires_grad = False
self.graph = ProteinGraph(d_node, d_edge, d_position)
self.intra_graph_att_layers = nn.ModuleList([
IntraGraphAttention(d_node, d_edge, num_heads) for _ in range(num_intra_layers)
])
self.diff_layer = DiffEmbeddingLayer(d_node)
self.mim_layers = nn.ModuleList([
MIM(d_node, d_edge, d_node, num_heads) for _ in range(num_mim_layers)
])
self.cross_graph_att_layers = nn.ModuleList([
CrossGraphAttention(d_node, d_cross_edge, d_node, num_heads) for _ in range(num_cross_layers)
])
self.cross_graph_edge_mapping = nn.Linear(1, d_cross_edge)
self.mapping = nn.Linear(d_cross_edge, 1)
self.d_cross_edge = d_cross_edge
self.learning_rate = lr
self.delta = delta
def forward(self, binder_tokens, wt_tokens, mut_tokens):
device = binder_tokens.device
# Construct Graph
# print("Graph")
binder_node, binder_edge, binder_node_mask, binder_edge_mask = self.graph(binder_tokens, self.esm, self.alphabet)
wt_node, wt_edge, wt_node_mask, wt_edge_mask = self.graph(wt_tokens, self.esm, self.alphabet)
mut_node, mut_edge, mut_node_mask, mut_edge_mask = self.graph(mut_tokens, self.esm, self.alphabet)
# Intra-Graph Attention
# print("Intra Graph")
for layer in self.intra_graph_att_layers:
binder_node, binder_edge = layer(binder_node, binder_edge)
binder_node = binder_node * binder_node_mask.unsqueeze(-1)
binder_edge = binder_edge * binder_edge_mask.unsqueeze(-1)
wt_node, wt_edge = layer(wt_node, wt_edge)
wt_node = wt_node * wt_node_mask.unsqueeze(-1)
wt_edge = wt_edge * wt_edge_mask.unsqueeze(-1)
mut_node, mut_edge = layer(mut_node, mut_edge)
mut_node = mut_node * mut_node_mask.unsqueeze(-1)
mut_edge = mut_edge * mut_edge_mask.unsqueeze(-1)
# Differential Embedding Layer
# print("Diff")
diff_vec = self.diff_layer(wt_node, mut_node)
# Mutation Impact Module
# print("MIM")
for layer in self.mim_layers:
wt_node, wt_edge = layer(wt_node, wt_edge, diff_vec)
wt_node = wt_node * wt_node_mask.unsqueeze(-1)
wt_edge = wt_edge * wt_edge_mask.unsqueeze(-1)
mut_node, mut_edge = layer(mut_node, mut_edge, diff_vec)
mut_node = mut_node * mut_node_mask.unsqueeze(-1)
mut_edge = mut_edge * mut_edge_mask.unsqueeze(-1)
# Initialize cross-graph edges
B = mut_node.shape[0]
L_mut = mut_node.shape[1]
L_wt = wt_node.shape[1]
L_binder = binder_node.shape[1]
mut_binder_edges = torch.randn(B, L_mut, L_binder, self.d_cross_edge).to(device)
wt_binder_edges = torch.randn(B, L_wt, L_binder, self.d_cross_edge).to(device)
mut_binder_mask = mut_node_mask.unsqueeze(-1) * binder_node_mask.unsqueeze(1).to(device)
wt_binder_mask = wt_node_mask.unsqueeze(-1) * binder_node_mask.unsqueeze(1).to(device)
# pdb.set_trace()
# Cross-Graph Attention
# print("Cross")
for layer in self.cross_graph_att_layers:
wt_node, binder_node, wt_binder_edges = layer(wt_node, binder_node, wt_binder_edges, diff_vec)
wt_node = wt_node * wt_node_mask.unsqueeze(-1)
binder_node = binder_node * binder_node_mask.unsqueeze(-1)
wt_binder_edges = wt_binder_edges * wt_binder_mask.unsqueeze(-1)
mut_node, binder_node, mut_binder_edges = layer(mut_node, binder_node, mut_binder_edges, diff_vec)
mut_node = mut_node * mut_node_mask.unsqueeze(-1)
binder_node = binder_node * binder_node_mask.unsqueeze(-1)
mut_binder_edges = mut_binder_edges * mut_binder_mask.unsqueeze(-1)
wt_binder_edges = torch.mean(wt_binder_edges, dim=(1,2))
mut_binder_edges = torch.mean(mut_binder_edges, dim=(1,2))
wt_pred = torch.sigmoid(self.mapping(wt_binder_edges))
mut_pred = torch.sigmoid(self.mapping(mut_binder_edges))
return wt_pred, mut_pred
def training_step(self, batch, batch_idx):
opt = self.optimizers()
lr = opt.param_groups[0]['lr']
self.log('learning_rate', lr, on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
binder_tokens = batch['binder_input_ids'].to(self.device)
mut_tokens = batch['mutant_input_ids'].to(self.device)
wt_tokens = batch['wildtype_input_ids'].to(self.device)
wt_pred, mut_pred = self.forward(binder_tokens, wt_tokens, mut_tokens)
wt_loss = (torch.relu(mut_pred) ** 2).mean()
mut_loss = (torch.relu(1 - wt_pred) ** 2).mean()
loss = wt_loss + mut_loss
# pdb.set_trace()
self.log('train_wt_loss', wt_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('train_mut_loss', mut_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('train_loss', loss.item(), on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
binder_tokens = batch['binder_input_ids'].to(self.device)
mut_tokens = batch['mutant_input_ids'].to(self.device)
wt_tokens = batch['wildtype_input_ids'].to(self.device)
wt_pred, mut_pred = self.forward(binder_tokens, wt_tokens, mut_tokens)
wt_loss = (torch.relu(mut_pred) ** 2).mean()
mut_loss = (torch.relu(1 - wt_pred) ** 2).mean()
loss = wt_loss + mut_loss
self.log('val_wt_loss', wt_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('val_mut_loss', mut_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('val_loss', loss.item(), on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=self.learning_rate, betas=(0.9, 0.95))
base_lr = 1e-5
max_lr = self.learning_rate
min_lr = 0.1 * self.learning_rate
schedulers = CosineAnnealingWithWarmup(optimizer, warmup_steps=600, total_steps=15390,
base_lr=base_lr, max_lr=max_lr, min_lr=min_lr)
lr_schedulers = {
"scheduler": schedulers,
"name": 'learning_rate_logs',
"interval": 'step', # The scheduler updates the learning rate at every step (not epoch)
'frequency': 1 # The scheduler updates the learning rate after every batch
}
return [optimizer], [lr_schedulers]
def on_training_epoch_end(self, outputs):
gc.collect()
torch.cuda.empty_cache()
super().training_epoch_end(outputs)
# def on_validation_epoch_end(self, outputs):
# gc.collect()
# torch.cuda.empty_cache()
# super().validation_epoch_end(outputs)
def main():
parser = ArgumentParser()
parser.add_argument("-o", dest="output_file", help="File for output of model parameters", required=True, type=str)
parser.add_argument("-lr", type=float, default=1e-3)
parser.add_argument("-batch_size", type=int, default=2, help="Batch size")
parser.add_argument("-d_node", type=int, default=1024, help="Node Representation Dimension")
parser.add_argument("-d_edge", type=int, default=512, help="Intra-Graph Edge Representation Dimension")
parser.add_argument("-d_cross_edge", type=int, default=512, help="Cross-Graph Edge Representation Dimension")
parser.add_argument("-d_position", type=int, default=8, help="Positional Embedding Dimension")
parser.add_argument("-n_heads", type=int, default=8)
parser.add_argument("-n_intra_layers", type=int, default=1)
parser.add_argument("-n_mim_layers", type=int, default=1)
parser.add_argument("-n_cross_layers", type=int, default=1)
parser.add_argument("-sm", default=None, help="File containing initial params", type=str)
parser.add_argument("-max_epochs", type=int, default=15, help="Max number of epochs to train")
parser.add_argument("-dropout", type=float, default=0.2)
parser.add_argument("-grad_clip", type=float, default=0.5)
parser.add_argument("-delta", type=float, default=1)
args = parser.parse_args()
# Initialize the process group for distributed training
dist.init_process_group(backend='nccl')
train_dataset = load_from_disk('/home/tc415/muPPIt/dataset/train/ppiref')
val_dataset = load_from_disk('/home/tc415/muPPIt/dataset/val/ppiref')
# val_dataset = None
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
data_module = CustomDataModule(train_dataset, val_dataset, tokenizer=tokenizer, batch_size=args.batch_size)
model = muPPIt(args.d_node, args.d_edge, args.d_cross_edge, args.d_position, args.n_heads,
args.n_intra_layers, args.n_mim_layers, args.n_cross_layers, args.lr, args.delta)
if args.sm:
model = muPPIt.load_from_checkpoint(args.sm,args.d_node, args.d_edge, args.d_cross_edge, args.d_position, args.n_heads,
args.n_intra_layers, args.n_mim_layers, args.n_cross_layers, args.lr, args.delta)
else:
print("Train from scratch!")
run_id = str(uuid.uuid4())
logger = WandbLogger(project=f"muppit",
name="debug",
# name=f"lr={args.lr}_dnode={args.d_node}_dedge={args.d_edge}_dcross={args.d_cross_edge}_dposition={args.d_position}",
job_type='model-training',
id=run_id)
checkpoint_callback = ModelCheckpoint(
monitor='val_loss',
dirpath=args.output_file,
filename='model-{epoch:02d}-{val_mcc:.2f}',
save_top_k=-1,
mode='max',
)
early_stopping_callback = EarlyStopping(
monitor='val_mcc',
patience=5,
verbose=True,
mode='max'
)
accumulator = GradientAccumulationScheduler(scheduling={0: 8, 3: 4, 20: 2})
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator='gpu',
strategy='ddp_find_unused_parameters_true',
precision='bf16',
# logger=logger,
devices=[0,1,2],
callbacks=[checkpoint_callback, accumulator, early_stopping_callback],
gradient_clip_val=args.grad_clip,
# num_sanity_val_steps=0
)
trainer.fit(model, datamodule=data_module)
best_model_path = checkpoint_callback.best_model_path
print(best_model_path)
if __name__ == "__main__":
main()