File size: 16,714 Bytes
ed7b048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import pdb
from pytorch_lightning.strategies import DDPStrategy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, DistributedSampler, BatchSampler, Sampler
from datasets import load_from_disk
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, \
Timer, TQDMProgressBar, LearningRateMonitor, StochasticWeightAveraging, GradientAccumulationScheduler
from pytorch_lightning.loggers import WandbLogger
from torch.optim.lr_scheduler import _LRScheduler
from transformers.optimization import get_cosine_schedule_with_warmup
from argparse import ArgumentParser
import os
import uuid
import esm
import numpy as np
import torch.distributed as dist
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer, get_cosine_schedule_with_warmup
# from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from torch.optim import Adam, AdamW
from sklearn.metrics import roc_auc_score, f1_score, matthews_corrcoef
import gc
from models.graph import ProteinGraph
from models.modules_vec import IntraGraphAttention, DiffEmbeddingLayer, MIM, CrossGraphAttention
os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
def collate_fn(batch):
# Unpack the batch
binders = []
mutants = []
wildtypes = []
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
for b in batch:
binders.append(torch.tensor(b['binder_tokens']).squeeze(0)) # shape: 1*L1 -> L1
mutants.append(torch.tensor(b['mutant_tokens']).squeeze(0)) # shape: 1*L2 -> L2
wildtypes.append(torch.tensor(b['wildtype_tokens']).squeeze(0)) # shape: 1*L3 -> L3
# Collate the tensors using torch's pad_sequence
binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)
mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)
wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)
# Return the collated batch
return {
'binder_input_ids': binder_input_ids.int(),
'mutant_input_ids': mutant_input_ids.int(),
'wildtype_input_ids': wildtype_input_ids.int(),
}
class LengthAwareDistributedSampler(DistributedSampler):
def __init__(self, dataset, key, batch_size, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.dataset = dataset
self.key = key
self.batch_size = batch_size
# Sort indices by the length of the mutant sequence
self.indices = sorted(range(len(self.dataset)), key=lambda i: len(self.dataset[i][key]))
def __iter__(self):
# Divide indices among replicas
indices = self.indices[self.rank::self.num_replicas]
if self.shuffle:
torch.manual_seed(self.epoch)
indices = torch.randperm(len(indices)).tolist()
# Yield indices in batches
for i in range(0, len(indices), self.batch_size):
yield indices[i:i+self.batch_size]
def __len__(self):
return len(self.indices) // self.num_replicas
def set_epoch(self, epoch):
self.epoch = epoch
class CustomDataModule(pl.LightningDataModule):
def __init__(self, train_dataset, val_dataset, tokenizer, batch_size: int = 128):
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.batch_size = batch_size
self.tokenizer = tokenizer
def train_dataloader(self):
# batch_sampler = LengthAwareDistributedSampler(self.train_dataset, 'mutant_tokens', self.batch_size)
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, collate_fn=collate_fn,
num_workers=8, pin_memory=True)
def val_dataloader(self):
# batch_sampler = LengthAwareDistributedSampler(self.val_dataset, 'mutant_tokens', self.batch_size)
return DataLoader(self.val_dataset, batch_size=self.batch_size, collate_fn=collate_fn, num_workers=8,
pin_memory=True)
def setup(self, stage=None):
if stage == 'test' or stage is None:
pass
class CosineAnnealingWithWarmup(_LRScheduler):
def __init__(self, optimizer, warmup_steps, total_steps, base_lr, max_lr, min_lr, last_epoch=-1):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.base_lr = base_lr
self.max_lr = max_lr
self.min_lr = min_lr
super(CosineAnnealingWithWarmup, self).__init__(optimizer, last_epoch)
print(f"SELF BASE LRS = {self.base_lrs}")
def get_lr(self):
if self.last_epoch < self.warmup_steps:
# Linear warmup phase from base_lr to max_lr
return [self.base_lr + (self.max_lr - self.base_lr) * (self.last_epoch / self.warmup_steps) for base_lr in self.base_lrs]
# Cosine annealing phase from max_lr to min_lr
progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
cosine_decay = 0.5 * (1 + np.cos(np.pi * progress))
decayed_lr = self.min_lr + (self.max_lr - self.min_lr) * cosine_decay
return [decayed_lr for base_lr in self.base_lrs]
class muPPIt(pl.LightningModule):
def __init__(self, d_node, d_edge, d_cross_edge, d_position, num_heads,
num_intra_layers, num_mim_layers, num_cross_layers, lr, delta=1.0):
super(muPPIt, self).__init__()
self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
for param in self.esm.parameters():
param.requires_grad = False
self.graph = ProteinGraph(d_node, d_edge, d_position)
self.intra_graph_att_layers = nn.ModuleList([
IntraGraphAttention(d_node, d_edge, num_heads) for _ in range(num_intra_layers)
])
self.diff_layer = DiffEmbeddingLayer(d_node)
self.mim_layers = nn.ModuleList([
MIM(d_node, d_edge, d_node, num_heads) for _ in range(num_mim_layers)
])
self.cross_graph_att_layers = nn.ModuleList([
CrossGraphAttention(d_node, d_cross_edge, d_node, num_heads) for _ in range(num_cross_layers)
])
self.cross_graph_edge_mapping = nn.Linear(1, d_cross_edge)
self.mapping = nn.Linear(d_cross_edge, 1)
self.d_cross_edge = d_cross_edge
self.learning_rate = lr
self.delta = delta
def forward(self, binder_tokens, wt_tokens, mut_tokens):
device = binder_tokens.device
# Construct Graph
# print("Graph")
binder_node, binder_edge, binder_node_mask, binder_edge_mask = self.graph(binder_tokens, self.esm, self.alphabet)
wt_node, wt_edge, wt_node_mask, wt_edge_mask = self.graph(wt_tokens, self.esm, self.alphabet)
mut_node, mut_edge, mut_node_mask, mut_edge_mask = self.graph(mut_tokens, self.esm, self.alphabet)
# Intra-Graph Attention
# print("Intra Graph")
for layer in self.intra_graph_att_layers:
binder_node, binder_edge = layer(binder_node, binder_edge)
binder_node = binder_node * binder_node_mask.unsqueeze(-1)
binder_edge = binder_edge * binder_edge_mask.unsqueeze(-1)
wt_node, wt_edge = layer(wt_node, wt_edge)
wt_node = wt_node * wt_node_mask.unsqueeze(-1)
wt_edge = wt_edge * wt_edge_mask.unsqueeze(-1)
mut_node, mut_edge = layer(mut_node, mut_edge)
mut_node = mut_node * mut_node_mask.unsqueeze(-1)
mut_edge = mut_edge * mut_edge_mask.unsqueeze(-1)
# Differential Embedding Layer
# print("Diff")
diff_vec = self.diff_layer(wt_node, mut_node)
# Mutation Impact Module
# print("MIM")
for layer in self.mim_layers:
wt_node, wt_edge = layer(wt_node, wt_edge, diff_vec)
wt_node = wt_node * wt_node_mask.unsqueeze(-1)
wt_edge = wt_edge * wt_edge_mask.unsqueeze(-1)
mut_node, mut_edge = layer(mut_node, mut_edge, diff_vec)
mut_node = mut_node * mut_node_mask.unsqueeze(-1)
mut_edge = mut_edge * mut_edge_mask.unsqueeze(-1)
# Initialize cross-graph edges
B = mut_node.shape[0]
L_mut = mut_node.shape[1]
L_wt = wt_node.shape[1]
L_binder = binder_node.shape[1]
mut_binder_edges = torch.randn(B, L_mut, L_binder, self.d_cross_edge).to(device)
wt_binder_edges = torch.randn(B, L_wt, L_binder, self.d_cross_edge).to(device)
mut_binder_mask = mut_node_mask.unsqueeze(-1) * binder_node_mask.unsqueeze(1).to(device)
wt_binder_mask = wt_node_mask.unsqueeze(-1) * binder_node_mask.unsqueeze(1).to(device)
# pdb.set_trace()
# Cross-Graph Attention
# print("Cross")
for layer in self.cross_graph_att_layers:
wt_node, binder_node, wt_binder_edges = layer(wt_node, binder_node, wt_binder_edges, diff_vec)
wt_node = wt_node * wt_node_mask.unsqueeze(-1)
binder_node = binder_node * binder_node_mask.unsqueeze(-1)
wt_binder_edges = wt_binder_edges * wt_binder_mask.unsqueeze(-1)
mut_node, binder_node, mut_binder_edges = layer(mut_node, binder_node, mut_binder_edges, diff_vec)
mut_node = mut_node * mut_node_mask.unsqueeze(-1)
binder_node = binder_node * binder_node_mask.unsqueeze(-1)
mut_binder_edges = mut_binder_edges * mut_binder_mask.unsqueeze(-1)
wt_binder_edges = torch.mean(wt_binder_edges, dim=(1,2))
mut_binder_edges = torch.mean(mut_binder_edges, dim=(1,2))
wt_pred = torch.sigmoid(self.mapping(wt_binder_edges))
mut_pred = torch.sigmoid(self.mapping(mut_binder_edges))
return wt_pred, mut_pred
def training_step(self, batch, batch_idx):
opt = self.optimizers()
lr = opt.param_groups[0]['lr']
self.log('learning_rate', lr, on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
binder_tokens = batch['binder_input_ids'].to(self.device)
mut_tokens = batch['mutant_input_ids'].to(self.device)
wt_tokens = batch['wildtype_input_ids'].to(self.device)
wt_pred, mut_pred = self.forward(binder_tokens, wt_tokens, mut_tokens)
wt_loss = (torch.relu(mut_pred) ** 2).mean()
mut_loss = (torch.relu(1 - wt_pred) ** 2).mean()
loss = wt_loss + mut_loss
# pdb.set_trace()
self.log('train_wt_loss', wt_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('train_mut_loss', mut_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('train_loss', loss.item(), on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
binder_tokens = batch['binder_input_ids'].to(self.device)
mut_tokens = batch['mutant_input_ids'].to(self.device)
wt_tokens = batch['wildtype_input_ids'].to(self.device)
wt_pred, mut_pred = self.forward(binder_tokens, wt_tokens, mut_tokens)
wt_loss = (torch.relu(mut_pred) ** 2).mean()
mut_loss = (torch.relu(1 - wt_pred) ** 2).mean()
loss = wt_loss + mut_loss
self.log('val_wt_loss', wt_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('val_mut_loss', mut_loss.item(), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('val_loss', loss.item(), on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True)
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=self.learning_rate, betas=(0.9, 0.95))
base_lr = 1e-5
max_lr = self.learning_rate
min_lr = 0.1 * self.learning_rate
schedulers = CosineAnnealingWithWarmup(optimizer, warmup_steps=600, total_steps=15390,
base_lr=base_lr, max_lr=max_lr, min_lr=min_lr)
lr_schedulers = {
"scheduler": schedulers,
"name": 'learning_rate_logs',
"interval": 'step', # The scheduler updates the learning rate at every step (not epoch)
'frequency': 1 # The scheduler updates the learning rate after every batch
}
return [optimizer], [lr_schedulers]
def on_training_epoch_end(self, outputs):
gc.collect()
torch.cuda.empty_cache()
super().training_epoch_end(outputs)
# def on_validation_epoch_end(self, outputs):
# gc.collect()
# torch.cuda.empty_cache()
# super().validation_epoch_end(outputs)
def main():
parser = ArgumentParser()
parser.add_argument("-o", dest="output_file", help="File for output of model parameters", required=True, type=str)
parser.add_argument("-lr", type=float, default=1e-3)
parser.add_argument("-batch_size", type=int, default=2, help="Batch size")
parser.add_argument("-d_node", type=int, default=1024, help="Node Representation Dimension")
parser.add_argument("-d_edge", type=int, default=512, help="Intra-Graph Edge Representation Dimension")
parser.add_argument("-d_cross_edge", type=int, default=512, help="Cross-Graph Edge Representation Dimension")
parser.add_argument("-d_position", type=int, default=8, help="Positional Embedding Dimension")
parser.add_argument("-n_heads", type=int, default=8)
parser.add_argument("-n_intra_layers", type=int, default=1)
parser.add_argument("-n_mim_layers", type=int, default=1)
parser.add_argument("-n_cross_layers", type=int, default=1)
parser.add_argument("-sm", default=None, help="File containing initial params", type=str)
parser.add_argument("-max_epochs", type=int, default=15, help="Max number of epochs to train")
parser.add_argument("-dropout", type=float, default=0.2)
parser.add_argument("-grad_clip", type=float, default=0.5)
parser.add_argument("-delta", type=float, default=1)
args = parser.parse_args()
# Initialize the process group for distributed training
dist.init_process_group(backend='nccl')
train_dataset = load_from_disk('/home/tc415/muPPIt/dataset/train/ppiref')
val_dataset = load_from_disk('/home/tc415/muPPIt/dataset/val/ppiref')
# val_dataset = None
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
data_module = CustomDataModule(train_dataset, val_dataset, tokenizer=tokenizer, batch_size=args.batch_size)
model = muPPIt(args.d_node, args.d_edge, args.d_cross_edge, args.d_position, args.n_heads,
args.n_intra_layers, args.n_mim_layers, args.n_cross_layers, args.lr, args.delta)
if args.sm:
model = muPPIt.load_from_checkpoint(args.sm,args.d_node, args.d_edge, args.d_cross_edge, args.d_position, args.n_heads,
args.n_intra_layers, args.n_mim_layers, args.n_cross_layers, args.lr, args.delta)
else:
print("Train from scratch!")
run_id = str(uuid.uuid4())
logger = WandbLogger(project=f"muppit",
name="debug",
# name=f"lr={args.lr}_dnode={args.d_node}_dedge={args.d_edge}_dcross={args.d_cross_edge}_dposition={args.d_position}",
job_type='model-training',
id=run_id)
checkpoint_callback = ModelCheckpoint(
monitor='val_loss',
dirpath=args.output_file,
filename='model-{epoch:02d}-{val_mcc:.2f}',
save_top_k=-1,
mode='max',
)
early_stopping_callback = EarlyStopping(
monitor='val_mcc',
patience=5,
verbose=True,
mode='max'
)
accumulator = GradientAccumulationScheduler(scheduling={0: 8, 3: 4, 20: 2})
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator='gpu',
strategy='ddp_find_unused_parameters_true',
precision='bf16',
# logger=logger,
devices=[0,1,2],
callbacks=[checkpoint_callback, accumulator, early_stopping_callback],
gradient_clip_val=args.grad_clip,
# num_sanity_val_steps=0
)
trainer.fit(model, datamodule=data_module)
best_model_path = checkpoint_callback.best_model_path
print(best_model_path)
if __name__ == "__main__":
main()
|