File size: 10,336 Bytes
65bd8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
from torch.utils.data import DataLoader, Subset
from torch.optim import AdamW
import torch.nn.functional as F
from datasets import load_from_disk
import esm
import numpy as np
import os
from transformers import AutoTokenizer
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
import pytorch_lightning as pl

max_epochs = 30
batch_size = 4
lr = 1e-4
dropout = 0.1
margin = 10

vhse8_values = {
    'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
    'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
    'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
    'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
    'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
    'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
    'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
    'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
    'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
    'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
    'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
    'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
    'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
    'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
    'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
    'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
    'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
    'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
    'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
    'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}

aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}

vhse8_tensor = torch.zeros(24, 8)
for aa, values in vhse8_values.items():
    aa_index = aa_to_idx[aa]
    vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor.requires_grad = False

train_dataset = load_from_disk('/home/tc415/muPPIt_embedding/dataset/train/ppiref_skempi_2')
val_dataset = load_from_disk('/home/tc415/muPPIt_embedding/dataset/val/ppiref_skempi_2')

def collate_fn(batch):
    binders = []
    mutants = []
    wildtypes = []
    affs = []
    tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")

    for b in batch:
        binder = torch.tensor(b['binder_input_ids']['input_ids'][1:-1])
        mutant = torch.tensor(b['mutant_input_ids']['input_ids'][1:-1])
        wildtype = torch.tensor(b['wildtype_input_ids']['input_ids'][1:-1])

        if binder.dim() == 0 or binder.numel() == 0 or mutant.dim() == 0 or mutant.numel() == 0 or wildtype.dim() == 0 or wildtype.numel() == 0:
            continue
        binders.append(binder)
        mutants.append(mutant)
        wildtypes.append(wildtype)
        affs.append(b['aff'])

    binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)
    mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)
    wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)

    affs = torch.tensor(affs)
    return {
        'binder_input_ids': binder_input_ids.int(),
        'mutant_input_ids': mutant_input_ids.int(),
        'wildtype_input_ids': wildtype_input_ids.int(),
        'aff': affs
    }

class muPPItLightning(pl.LightningModule):
    def __init__(self, d_node, num_heads, dropout, margin, lr, train_dataset, easy_example_indices, hard_example_indices):
        super(muPPItLightning, self).__init__()

        self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
        for param in self.esm.parameters():
            param.requires_grad = False

        self.attention = torch.nn.MultiheadAttention(embed_dim=d_node, num_heads=num_heads)
        self.layer_norm = torch.nn.LayerNorm(d_node)

        self.map = torch.nn.Sequential(
            torch.nn.Linear(d_node, d_node // 2), 
            torch.nn.SiLU(),
            torch.nn.Dropout(dropout),
            torch.nn.Linear(d_node // 2, 1)
        )

        self.margin = margin
        self.learning_rate = lr
        self.loss_threshold = 0.5
        self.save_hyperparameters()

        # Curriculum learning
        self.train_dataset = train_dataset
        self.easy_example_indices = easy_example_indices
        self.hard_example_indices = hard_example_indices
        self.current_subset_indices = easy_example_indices  # Start with easy examples
        self.max_epochs = max_epochs

    def forward(self, binder_tokens, wt_tokens, mut_tokens):
        device = self.device
        global vhse8_tensor
        vhse8_tensor = vhse8_tensor.to(device)

        with torch.no_grad():
            binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
            binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * binder_pad_mask.unsqueeze(-1)
            binder_vhse8 = vhse8_tensor[binder_tokens]
            binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)

            mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
            mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * mut_pad_mask.unsqueeze(-1)
            mut_vhse8 = vhse8_tensor[mut_tokens]
            mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)

            wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
            wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * wt_pad_mask.unsqueeze(-1)
            wt_vhse8 = vhse8_tensor[wt_tokens]
            wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)

        binder_wt = torch.concat([binder_embed, wt_embed], dim=1)
        binder_mut = torch.concat([binder_embed, mut_embed], dim=1)

        binder_wt = binder_wt.transpose(0, 1)
        binder_mut = binder_mut.transpose(0, 1)

        binder_wt_attn, _ = self.attention(binder_wt, binder_wt, binder_wt)
        binder_mut_attn, _ = self.attention(binder_mut, binder_mut, binder_mut)

        binder_wt_attn = binder_wt + binder_wt_attn
        binder_mut_attn = binder_mut + binder_mut_attn

        binder_wt_attn = binder_wt_attn.transpose(0, 1)
        binder_mut_attn = binder_mut_attn.transpose(0, 1)

        binder_wt_attn = self.layer_norm(binder_wt_attn)
        binder_mut_attn = self.layer_norm(binder_mut_attn)

        mapped_binder_wt = self.map(binder_wt_attn).squeeze(-1)
        mapped_binder_mut = self.map(binder_mut_attn).squeeze(-1)

        distance = torch.sqrt(torch.sum((mapped_binder_wt - mapped_binder_mut) ** 2, dim=-1))
        return distance

    def compute_loss(self, binder_tokens, wt_tokens, mut_tokens, aff):
        distance = self(binder_tokens, wt_tokens, mut_tokens)
        upper_loss = F.relu(distance - self.margin * (aff + 1))
        lower_loss = F.relu(self.margin * aff - distance)
        loss = upper_loss + lower_loss

        loss_weights = torch.ones_like(loss)
        hard_example_mask = loss > self.loss_threshold
        loss_weights[hard_example_mask] = 2.0
        weighted_loss = loss * loss_weights

        return weighted_loss.mean()

    def training_step(self, batch, batch_idx):
        binder_tokens = batch['binder_input_ids']
        mut_tokens = batch['mutant_input_ids']
        wt_tokens = batch['wildtype_input_ids']
        aff = batch['aff']

        loss = self.compute_loss(binder_tokens, wt_tokens, mut_tokens, aff)
        self.log("train_loss", loss)
        return loss

    def validation_step(self, batch, batch_idx):
        binder_tokens = batch['binder_input_ids']
        mut_tokens = batch['mutant_input_ids']
        wt_tokens = batch['wildtype_input_ids']
        aff = batch['aff']

        val_loss = self.compute_loss(binder_tokens, wt_tokens, mut_tokens, aff)
        self.log("val_loss", val_loss)
        return val_loss

    def configure_optimizers(self):
        optimizer = AdamW(self.parameters(), lr=self.learning_rate, betas=(0.9, 0.95))
        total_steps = len(self.train_dataset) // batch_size * max_epochs
        warmup_steps = int(0.1 * total_steps)

        scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=warmup_steps,
            num_training_steps=total_steps
        )
        cosine_scheduler = CosineAnnealingLR(optimizer, T_max=total_steps - warmup_steps, eta_min=1e-6)

        return [optimizer], [scheduler, cosine_scheduler]

    def train_dataloader(self):
        train_subset = Subset(self.train_dataset, self.current_subset_indices)
        return DataLoader(train_subset, batch_size=batch_size, collate_fn=collate_fn, shuffle=True, num_workers=4)

    def on_train_epoch_start(self):
        # Curriculum learning logic
        epoch = self.current_epoch
        if epoch < 5:
            # Use only easy examples in the first 5 epochs
            self.current_subset_indices = self.easy_example_indices
        else:
            # After 5 epochs, start adding more hard examples
            num_hard_examples = int((epoch / self.max_epochs) * len(self.hard_example_indices))
            selected_hard_indices = self.hard_example_indices[:num_hard_examples]
            self.current_subset_indices = self.easy_example_indices + selected_hard_indices

# Load data indices for curriculum learning
easy_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/ppiref_index.npy').tolist()
hard_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/skempi_index.npy').tolist()

# Instantiate the model with curriculum learning data
model = muPPItLightning(
    d_node=1288, 
    num_heads=8, 
    dropout=dropout, 
    margin=margin, 
    lr=lr, 
    train_dataset=train_dataset, 
    easy_example_indices=easy_example_indices, 
    hard_example_indices=hard_example_indices
)

# Trainer
trainer = pl.Trainer(
    max_epochs=max_epochs,
    gpus=-1,  # Use all available GPUs
    accelerator='gpu',
    strategy='ddp'
)

# Train the model
trainer.fit(model)