File size: 10,336 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import torch
from torch.utils.data import DataLoader, Subset
from torch.optim import AdamW
import torch.nn.functional as F
from datasets import load_from_disk
import esm
import numpy as np
import os
from transformers import AutoTokenizer
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
import pytorch_lightning as pl
max_epochs = 30
batch_size = 4
lr = 1e-4
dropout = 0.1
margin = 10
vhse8_values = {
'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}
aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}
vhse8_tensor = torch.zeros(24, 8)
for aa, values in vhse8_values.items():
aa_index = aa_to_idx[aa]
vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor.requires_grad = False
train_dataset = load_from_disk('/home/tc415/muPPIt_embedding/dataset/train/ppiref_skempi_2')
val_dataset = load_from_disk('/home/tc415/muPPIt_embedding/dataset/val/ppiref_skempi_2')
def collate_fn(batch):
binders = []
mutants = []
wildtypes = []
affs = []
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
for b in batch:
binder = torch.tensor(b['binder_input_ids']['input_ids'][1:-1])
mutant = torch.tensor(b['mutant_input_ids']['input_ids'][1:-1])
wildtype = torch.tensor(b['wildtype_input_ids']['input_ids'][1:-1])
if binder.dim() == 0 or binder.numel() == 0 or mutant.dim() == 0 or mutant.numel() == 0 or wildtype.dim() == 0 or wildtype.numel() == 0:
continue
binders.append(binder)
mutants.append(mutant)
wildtypes.append(wildtype)
affs.append(b['aff'])
binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)
mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)
wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)
affs = torch.tensor(affs)
return {
'binder_input_ids': binder_input_ids.int(),
'mutant_input_ids': mutant_input_ids.int(),
'wildtype_input_ids': wildtype_input_ids.int(),
'aff': affs
}
class muPPItLightning(pl.LightningModule):
def __init__(self, d_node, num_heads, dropout, margin, lr, train_dataset, easy_example_indices, hard_example_indices):
super(muPPItLightning, self).__init__()
self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
for param in self.esm.parameters():
param.requires_grad = False
self.attention = torch.nn.MultiheadAttention(embed_dim=d_node, num_heads=num_heads)
self.layer_norm = torch.nn.LayerNorm(d_node)
self.map = torch.nn.Sequential(
torch.nn.Linear(d_node, d_node // 2),
torch.nn.SiLU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(d_node // 2, 1)
)
self.margin = margin
self.learning_rate = lr
self.loss_threshold = 0.5
self.save_hyperparameters()
# Curriculum learning
self.train_dataset = train_dataset
self.easy_example_indices = easy_example_indices
self.hard_example_indices = hard_example_indices
self.current_subset_indices = easy_example_indices # Start with easy examples
self.max_epochs = max_epochs
def forward(self, binder_tokens, wt_tokens, mut_tokens):
device = self.device
global vhse8_tensor
vhse8_tensor = vhse8_tensor.to(device)
with torch.no_grad():
binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * binder_pad_mask.unsqueeze(-1)
binder_vhse8 = vhse8_tensor[binder_tokens]
binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)
mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * mut_pad_mask.unsqueeze(-1)
mut_vhse8 = vhse8_tensor[mut_tokens]
mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)
wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * wt_pad_mask.unsqueeze(-1)
wt_vhse8 = vhse8_tensor[wt_tokens]
wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)
binder_wt = torch.concat([binder_embed, wt_embed], dim=1)
binder_mut = torch.concat([binder_embed, mut_embed], dim=1)
binder_wt = binder_wt.transpose(0, 1)
binder_mut = binder_mut.transpose(0, 1)
binder_wt_attn, _ = self.attention(binder_wt, binder_wt, binder_wt)
binder_mut_attn, _ = self.attention(binder_mut, binder_mut, binder_mut)
binder_wt_attn = binder_wt + binder_wt_attn
binder_mut_attn = binder_mut + binder_mut_attn
binder_wt_attn = binder_wt_attn.transpose(0, 1)
binder_mut_attn = binder_mut_attn.transpose(0, 1)
binder_wt_attn = self.layer_norm(binder_wt_attn)
binder_mut_attn = self.layer_norm(binder_mut_attn)
mapped_binder_wt = self.map(binder_wt_attn).squeeze(-1)
mapped_binder_mut = self.map(binder_mut_attn).squeeze(-1)
distance = torch.sqrt(torch.sum((mapped_binder_wt - mapped_binder_mut) ** 2, dim=-1))
return distance
def compute_loss(self, binder_tokens, wt_tokens, mut_tokens, aff):
distance = self(binder_tokens, wt_tokens, mut_tokens)
upper_loss = F.relu(distance - self.margin * (aff + 1))
lower_loss = F.relu(self.margin * aff - distance)
loss = upper_loss + lower_loss
loss_weights = torch.ones_like(loss)
hard_example_mask = loss > self.loss_threshold
loss_weights[hard_example_mask] = 2.0
weighted_loss = loss * loss_weights
return weighted_loss.mean()
def training_step(self, batch, batch_idx):
binder_tokens = batch['binder_input_ids']
mut_tokens = batch['mutant_input_ids']
wt_tokens = batch['wildtype_input_ids']
aff = batch['aff']
loss = self.compute_loss(binder_tokens, wt_tokens, mut_tokens, aff)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
binder_tokens = batch['binder_input_ids']
mut_tokens = batch['mutant_input_ids']
wt_tokens = batch['wildtype_input_ids']
aff = batch['aff']
val_loss = self.compute_loss(binder_tokens, wt_tokens, mut_tokens, aff)
self.log("val_loss", val_loss)
return val_loss
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=self.learning_rate, betas=(0.9, 0.95))
total_steps = len(self.train_dataset) // batch_size * max_epochs
warmup_steps = int(0.1 * total_steps)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_steps
)
cosine_scheduler = CosineAnnealingLR(optimizer, T_max=total_steps - warmup_steps, eta_min=1e-6)
return [optimizer], [scheduler, cosine_scheduler]
def train_dataloader(self):
train_subset = Subset(self.train_dataset, self.current_subset_indices)
return DataLoader(train_subset, batch_size=batch_size, collate_fn=collate_fn, shuffle=True, num_workers=4)
def on_train_epoch_start(self):
# Curriculum learning logic
epoch = self.current_epoch
if epoch < 5:
# Use only easy examples in the first 5 epochs
self.current_subset_indices = self.easy_example_indices
else:
# After 5 epochs, start adding more hard examples
num_hard_examples = int((epoch / self.max_epochs) * len(self.hard_example_indices))
selected_hard_indices = self.hard_example_indices[:num_hard_examples]
self.current_subset_indices = self.easy_example_indices + selected_hard_indices
# Load data indices for curriculum learning
easy_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/ppiref_index.npy').tolist()
hard_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/skempi_index.npy').tolist()
# Instantiate the model with curriculum learning data
model = muPPItLightning(
d_node=1288,
num_heads=8,
dropout=dropout,
margin=margin,
lr=lr,
train_dataset=train_dataset,
easy_example_indices=easy_example_indices,
hard_example_indices=hard_example_indices
)
# Trainer
trainer = pl.Trainer(
max_epochs=max_epochs,
gpus=-1, # Use all available GPUs
accelerator='gpu',
strategy='ddp'
)
# Train the model
trainer.fit(model)
|