File size: 11,920 Bytes
65bd8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import pdb
from pytorch_lightning.strategies import DDPStrategy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, DistributedSampler, BatchSampler, Sampler
from datasets import load_from_disk
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, \
    Timer, TQDMProgressBar, LearningRateMonitor, StochasticWeightAveraging, GradientAccumulationScheduler
from pytorch_lightning.loggers import WandbLogger
from torch.optim.lr_scheduler import _LRScheduler
from transformers.optimization import get_cosine_schedule_with_warmup
from argparse import ArgumentParser
import os
import uuid
import esm
import numpy as np
import torch.distributed as dist
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer, get_cosine_schedule_with_warmup
# from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from torch.optim import Adam, AdamW
from sklearn.metrics import roc_auc_score, f1_score, matthews_corrcoef
import torch_geometric.nn as pyg_nn
import gc
import math

# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
# os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

vhse8_values = {
    'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
    'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
    'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
    'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
    'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
    'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
    'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
    'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
    'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
    'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
    'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
    'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
    'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
    'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
    'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
    'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
    'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
    'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
    'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
    'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}

aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}

vhse8_tensor = torch.zeros(24, 8)
for aa, values in vhse8_values.items():
    aa_index = aa_to_idx[aa]
    vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor.requires_grad = False


def collate_fn(batch):
    # Unpack the batch
    binders = []
    mutants = []
    wildtypes = []
    tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")

    for b in batch:
        binder = torch.tensor(b['binder_input_ids']['input_ids'][1:-1])
        mutant = torch.tensor(b['mutant_input_ids']['input_ids'][1:-1])
        wildtype = torch.tensor(b['wildtype_input_ids']['input_ids'][1:-1])

        if binder.dim() == 0 or binder.numel() == 0 or mutant.dim() == 0 or mutant.numel() == 0 or wildtype.dim() == 0 or wildtype.numel() == 0:
            continue
        binders.append(binder)  # shape: 1*L1 -> L1
        mutants.append(mutant)  # shape: 1*L2 -> L2
        wildtypes.append(wildtype)  # shape: 1*L3 -> L3

    
    # Collate the tensors using torch's pad_sequence
    try:
        binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)

        mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)

        wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)
    except:
        pdb.set_trace()
    # Return the collated batch
    return {
        'binder_input_ids': binder_input_ids.int(),
        'mutant_input_ids': mutant_input_ids.int(),
        'wildtype_input_ids': wildtype_input_ids.int(),
    }


class CustomDataModule(pl.LightningDataModule):
    def __init__(self, train_dataset, val_dataset, tokenizer, batch_size: int = 128):
        super().__init__()
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.batch_size = batch_size
        self.tokenizer = tokenizer
        print(len(train_dataset))
        print(len(val_dataset))

    def train_dataloader(self):
        # batch_sampler = LengthAwareDistributedSampler(self.train_dataset, 'mutant_tokens', self.batch_size)
        return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, collate_fn=collate_fn,
                          num_workers=8, pin_memory=True)

    def val_dataloader(self):
        # batch_sampler = LengthAwareDistributedSampler(self.val_dataset, 'mutant_tokens', self.batch_size)
        return DataLoader(self.val_dataset, batch_size=self.batch_size, collate_fn=collate_fn, num_workers=8, 
                          pin_memory=True)

    def setup(self, stage=None):
        if stage == 'test' or stage is None:
            pass


class CosineAnnealingWithWarmup(_LRScheduler):
    def __init__(self, optimizer, warmup_steps, total_steps, base_lr, max_lr, min_lr, last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.total_steps = total_steps
        self.base_lr = base_lr
        self.max_lr = max_lr
        self.min_lr = min_lr
        super(CosineAnnealingWithWarmup, self).__init__(optimizer, last_epoch)
        print(f"SELF BASE LRS = {self.base_lrs}")

    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            # Linear warmup phase from base_lr to max_lr
            return [self.base_lr + (self.max_lr - self.base_lr) * (self.last_epoch / self.warmup_steps) for base_lr in self.base_lrs]

        # Cosine annealing phase from max_lr to min_lr
        progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
        cosine_decay = 0.5 * (1 + np.cos(np.pi * progress))
        decayed_lr = self.min_lr + (self.max_lr - self.min_lr) * cosine_decay

        return [decayed_lr for base_lr in self.base_lrs]


class muPPIt(pl.LightningModule):
    def __init__(self, d_node, num_heads, dropout, margin, lr):
        super(muPPIt, self).__init__()

        self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
        for param in self.esm.parameters():
            param.requires_grad = False

        self.attention = nn.MultiheadAttention(embed_dim=d_node, num_heads=num_heads)
        self.layer_norm = nn.LayerNorm(d_node)

        self.map = nn.Sequential(
            nn.Linear(d_node, d_node // 2), 
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Linear(d_node // 2, 1)
        )

        # self.map = nn.Sequential(
        #     nn.Linear(d_node, d_node), 
        #     nn.SiLU(),
        #     # nn.Dropout(dropout),
        #     nn.Linear(d_node, d_node)
        # )

        self.margin = margin
        self.learning_rate = lr

        for layer in self.map:
            if isinstance(layer, nn.Linear): 
                nn.init.kaiming_uniform_(layer.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
                if layer.bias is not None:
                    nn.init.zeros_(layer.bias)
    
    def forward(self, binder_tokens, wt_tokens, mut_tokens):
        device = binder_tokens.device
        global vhse8_tensor

        vhse8_tensor = vhse8_tensor.to(device)

        with torch.no_grad():
            binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
            binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * binder_pad_mask.unsqueeze(-1)
            binder_vhse8 = vhse8_tensor[binder_tokens]
            binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)

            mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
            mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * mut_pad_mask.unsqueeze(-1)
            mut_vhse8 = vhse8_tensor[mut_tokens]
            mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)
            
            wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
            wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * wt_pad_mask.unsqueeze(-1)
            wt_vhse8 = vhse8_tensor[wt_tokens]
            wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)

        binder_wt = torch.concat([binder_embed, wt_embed], dim=1)
        binder_mut = torch.concat([binder_embed, mut_embed], dim=1)

        binder_wt = binder_wt.transpose(0,1)
        binder_mut = binder_mut.transpose(0,1)

        binder_wt_attn, _ = self.attention(binder_wt, binder_wt, binder_wt)
        binder_mut_attn, _ = self.attention(binder_mut, binder_mut, binder_mut)

        binder_wt_attn = binder_wt + binder_wt_attn
        binder_mut_attn = binder_mut + binder_mut_attn

        binder_wt_attn = binder_wt_attn.transpose(0, 1)
        binder_mut_attn = binder_mut_attn.transpose(0, 1)

        binder_wt_attn = self.layer_norm(binder_wt_attn)
        binder_mut_attn = self.layer_norm(binder_mut_attn)

        mapped_binder_wt = self.map(binder_wt_attn).squeeze(-1)      # B*(L1+L2)
        mapped_binder_mut = self.map(binder_mut_attn).squeeze(-1)     # B*(L1+L2)

        # mean_binder_wt = torch.mean(mapped_binder_wt, dim=1)
        # mean_binder_mut = torch.mean(mapped_binder_mut, dim=1)

        # pdb.set_trace()

        distance = torch.sqrt(torch.sum((mapped_binder_wt - mapped_binder_mut) ** 2, dim=-1))
        return distance

    def load_weights(self, checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)

        state_dict = checkpoint['state_dict']

        self.load_state_dict(state_dict, strict=True)

        for name, param in self.named_parameters():
            param.requires_grad = False

def main(args):
    tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")

    model = muPPIt(args.d_node, args.num_heads, args.dropout, args.margin, args.lr)
    model.load_weights(args.sm)
    
    device = model.device
    model.eval()

    binder_tokens = torch.tensor(tokenizer(args.binder)['input_ids'][1:-1]).unsqueeze(0).to(device)
    mut_tokens = torch.tensor(tokenizer(args.mutant)['input_ids'][1:-1]).unsqueeze(0).to(device)
    wt_tokens = torch.tensor(tokenizer(args.wildtype)['input_ids'][1:-1]).unsqueeze(0).to(device)

    with torch.no_grad():
        distance = model(binder_tokens, wt_tokens, mut_tokens)

    print(distance.item())



if __name__ == "__main__":
    parser = ArgumentParser()

    parser.add_argument("-sm", required=True, type=str)
    parser.add_argument("-binder", required=True, type=str)
    parser.add_argument("-mutant", required=True, type=str)
    parser.add_argument("-wildtype", required=True, type=str)
    parser.add_argument("-lr", type=float, default=1e-3)
    parser.add_argument("-batch_size", type=int, default=2, help="Batch size")
    parser.add_argument("-grad_clip", type=float, default=0.5)
    parser.add_argument("-margin", type=float, default=0.5)
    parser.add_argument("-max_epochs", type=int, default=30)
    parser.add_argument("-d_node", type=int, default=1024, help="Node Representation Dimension")
    parser.add_argument("-num_heads", type=int, default=4)
    parser.add_argument("-dropout", type=float, default=0.1)

    args = parser.parse_args()

    main(args)