File size: 11,920 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import pdb
from pytorch_lightning.strategies import DDPStrategy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, DistributedSampler, BatchSampler, Sampler
from datasets import load_from_disk
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, \
Timer, TQDMProgressBar, LearningRateMonitor, StochasticWeightAveraging, GradientAccumulationScheduler
from pytorch_lightning.loggers import WandbLogger
from torch.optim.lr_scheduler import _LRScheduler
from transformers.optimization import get_cosine_schedule_with_warmup
from argparse import ArgumentParser
import os
import uuid
import esm
import numpy as np
import torch.distributed as dist
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer, get_cosine_schedule_with_warmup
# from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from torch.optim import Adam, AdamW
from sklearn.metrics import roc_auc_score, f1_score, matthews_corrcoef
import torch_geometric.nn as pyg_nn
import gc
import math
# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
# os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
vhse8_values = {
'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}
aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}
vhse8_tensor = torch.zeros(24, 8)
for aa, values in vhse8_values.items():
aa_index = aa_to_idx[aa]
vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor.requires_grad = False
def collate_fn(batch):
# Unpack the batch
binders = []
mutants = []
wildtypes = []
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
for b in batch:
binder = torch.tensor(b['binder_input_ids']['input_ids'][1:-1])
mutant = torch.tensor(b['mutant_input_ids']['input_ids'][1:-1])
wildtype = torch.tensor(b['wildtype_input_ids']['input_ids'][1:-1])
if binder.dim() == 0 or binder.numel() == 0 or mutant.dim() == 0 or mutant.numel() == 0 or wildtype.dim() == 0 or wildtype.numel() == 0:
continue
binders.append(binder) # shape: 1*L1 -> L1
mutants.append(mutant) # shape: 1*L2 -> L2
wildtypes.append(wildtype) # shape: 1*L3 -> L3
# Collate the tensors using torch's pad_sequence
try:
binder_input_ids = torch.nn.utils.rnn.pad_sequence(binders, batch_first=True, padding_value=tokenizer.pad_token_id)
mutant_input_ids = torch.nn.utils.rnn.pad_sequence(mutants, batch_first=True, padding_value=tokenizer.pad_token_id)
wildtype_input_ids = torch.nn.utils.rnn.pad_sequence(wildtypes, batch_first=True, padding_value=tokenizer.pad_token_id)
except:
pdb.set_trace()
# Return the collated batch
return {
'binder_input_ids': binder_input_ids.int(),
'mutant_input_ids': mutant_input_ids.int(),
'wildtype_input_ids': wildtype_input_ids.int(),
}
class CustomDataModule(pl.LightningDataModule):
def __init__(self, train_dataset, val_dataset, tokenizer, batch_size: int = 128):
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.batch_size = batch_size
self.tokenizer = tokenizer
print(len(train_dataset))
print(len(val_dataset))
def train_dataloader(self):
# batch_sampler = LengthAwareDistributedSampler(self.train_dataset, 'mutant_tokens', self.batch_size)
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, collate_fn=collate_fn,
num_workers=8, pin_memory=True)
def val_dataloader(self):
# batch_sampler = LengthAwareDistributedSampler(self.val_dataset, 'mutant_tokens', self.batch_size)
return DataLoader(self.val_dataset, batch_size=self.batch_size, collate_fn=collate_fn, num_workers=8,
pin_memory=True)
def setup(self, stage=None):
if stage == 'test' or stage is None:
pass
class CosineAnnealingWithWarmup(_LRScheduler):
def __init__(self, optimizer, warmup_steps, total_steps, base_lr, max_lr, min_lr, last_epoch=-1):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.base_lr = base_lr
self.max_lr = max_lr
self.min_lr = min_lr
super(CosineAnnealingWithWarmup, self).__init__(optimizer, last_epoch)
print(f"SELF BASE LRS = {self.base_lrs}")
def get_lr(self):
if self.last_epoch < self.warmup_steps:
# Linear warmup phase from base_lr to max_lr
return [self.base_lr + (self.max_lr - self.base_lr) * (self.last_epoch / self.warmup_steps) for base_lr in self.base_lrs]
# Cosine annealing phase from max_lr to min_lr
progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
cosine_decay = 0.5 * (1 + np.cos(np.pi * progress))
decayed_lr = self.min_lr + (self.max_lr - self.min_lr) * cosine_decay
return [decayed_lr for base_lr in self.base_lrs]
class muPPIt(pl.LightningModule):
def __init__(self, d_node, num_heads, dropout, margin, lr):
super(muPPIt, self).__init__()
self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
for param in self.esm.parameters():
param.requires_grad = False
self.attention = nn.MultiheadAttention(embed_dim=d_node, num_heads=num_heads)
self.layer_norm = nn.LayerNorm(d_node)
self.map = nn.Sequential(
nn.Linear(d_node, d_node // 2),
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(d_node // 2, 1)
)
# self.map = nn.Sequential(
# nn.Linear(d_node, d_node),
# nn.SiLU(),
# # nn.Dropout(dropout),
# nn.Linear(d_node, d_node)
# )
self.margin = margin
self.learning_rate = lr
for layer in self.map:
if isinstance(layer, nn.Linear):
nn.init.kaiming_uniform_(layer.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
if layer.bias is not None:
nn.init.zeros_(layer.bias)
def forward(self, binder_tokens, wt_tokens, mut_tokens):
device = binder_tokens.device
global vhse8_tensor
vhse8_tensor = vhse8_tensor.to(device)
with torch.no_grad():
binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * binder_pad_mask.unsqueeze(-1)
binder_vhse8 = vhse8_tensor[binder_tokens]
binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)
mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * mut_pad_mask.unsqueeze(-1)
mut_vhse8 = vhse8_tensor[mut_tokens]
mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)
wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=True)["representations"][33] * wt_pad_mask.unsqueeze(-1)
wt_vhse8 = vhse8_tensor[wt_tokens]
wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)
binder_wt = torch.concat([binder_embed, wt_embed], dim=1)
binder_mut = torch.concat([binder_embed, mut_embed], dim=1)
binder_wt = binder_wt.transpose(0,1)
binder_mut = binder_mut.transpose(0,1)
binder_wt_attn, _ = self.attention(binder_wt, binder_wt, binder_wt)
binder_mut_attn, _ = self.attention(binder_mut, binder_mut, binder_mut)
binder_wt_attn = binder_wt + binder_wt_attn
binder_mut_attn = binder_mut + binder_mut_attn
binder_wt_attn = binder_wt_attn.transpose(0, 1)
binder_mut_attn = binder_mut_attn.transpose(0, 1)
binder_wt_attn = self.layer_norm(binder_wt_attn)
binder_mut_attn = self.layer_norm(binder_mut_attn)
mapped_binder_wt = self.map(binder_wt_attn).squeeze(-1) # B*(L1+L2)
mapped_binder_mut = self.map(binder_mut_attn).squeeze(-1) # B*(L1+L2)
# mean_binder_wt = torch.mean(mapped_binder_wt, dim=1)
# mean_binder_mut = torch.mean(mapped_binder_mut, dim=1)
# pdb.set_trace()
distance = torch.sqrt(torch.sum((mapped_binder_wt - mapped_binder_mut) ** 2, dim=-1))
return distance
def load_weights(self, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
state_dict = checkpoint['state_dict']
self.load_state_dict(state_dict, strict=True)
for name, param in self.named_parameters():
param.requires_grad = False
def main(args):
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
model = muPPIt(args.d_node, args.num_heads, args.dropout, args.margin, args.lr)
model.load_weights(args.sm)
device = model.device
model.eval()
binder_tokens = torch.tensor(tokenizer(args.binder)['input_ids'][1:-1]).unsqueeze(0).to(device)
mut_tokens = torch.tensor(tokenizer(args.mutant)['input_ids'][1:-1]).unsqueeze(0).to(device)
wt_tokens = torch.tensor(tokenizer(args.wildtype)['input_ids'][1:-1]).unsqueeze(0).to(device)
with torch.no_grad():
distance = model(binder_tokens, wt_tokens, mut_tokens)
print(distance.item())
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-sm", required=True, type=str)
parser.add_argument("-binder", required=True, type=str)
parser.add_argument("-mutant", required=True, type=str)
parser.add_argument("-wildtype", required=True, type=str)
parser.add_argument("-lr", type=float, default=1e-3)
parser.add_argument("-batch_size", type=int, default=2, help="Batch size")
parser.add_argument("-grad_clip", type=float, default=0.5)
parser.add_argument("-margin", type=float, default=0.5)
parser.add_argument("-max_epochs", type=int, default=30)
parser.add_argument("-d_node", type=int, default=1024, help="Node Representation Dimension")
parser.add_argument("-num_heads", type=int, default=4)
parser.add_argument("-dropout", type=float, default=0.1)
args = parser.parse_args()
main(args)
|