Delete benchmarks/DeepLoc
Browse files- benchmarks/DeepLoc/OG_membrane_type_all.csv +0 -3
- benchmarks/DeepLoc/cell_localization_predictor.py +0 -137
- benchmarks/DeepLoc/cell_localization_test.csv +0 -0
- benchmarks/DeepLoc/cell_localization_train_val.csv +0 -3
- benchmarks/DeepLoc/membrane_localization_predictor.py +0 -137
- benchmarks/DeepLoc/membrane_type_test.csv +0 -0
- benchmarks/DeepLoc/membrane_type_train.csv +0 -3
- benchmarks/DeepLoc/prep_deeploc_benchmark_data.ipynb +0 -488
benchmarks/DeepLoc/OG_membrane_type_all.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2d878da32a06092f880262048e3c1eb692721c274b0a458fcc712a0dcbd80c71
|
3 |
-
size 15683507
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/cell_localization_predictor.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
-
from torch.utils.data import DataLoader, Dataset
|
5 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
6 |
-
|
7 |
-
from tqdm import tqdm
|
8 |
-
from datetime import datetime
|
9 |
-
import pandas as pd
|
10 |
-
import numpy as np
|
11 |
-
import pickle
|
12 |
-
import os
|
13 |
-
|
14 |
-
# Hyperparameters dictionary
|
15 |
-
path = "/home/a03-sgoel/MDpLM"
|
16 |
-
|
17 |
-
hyperparams = {
|
18 |
-
"batch_size": 1,
|
19 |
-
"learning_rate": 4e-5,
|
20 |
-
"num_epochs": 5,
|
21 |
-
"max_length": 2000,
|
22 |
-
"train_data": path + "/benchmarks/DeepLoc/cell_localization_train_val.csv.csv",
|
23 |
-
"test_data" : path + "/benchmarks/DeepLoc/cell_localization_test.csv",
|
24 |
-
"val_data": "", # None
|
25 |
-
"embeddings_pkl": "", # Need to generate ESM embeddings and save as pkl file
|
26 |
-
}
|
27 |
-
|
28 |
-
# Dataset class can load pickle file
|
29 |
-
class LocalizationDataset(Dataset):
|
30 |
-
def __init__(self, csv_file, embeddings_pkl, max_length=2000):
|
31 |
-
self.data = pd.read_csv(csv_file)
|
32 |
-
self.max_length = max_length
|
33 |
-
|
34 |
-
# Map sequences to embeddings
|
35 |
-
with open(embeddings_pkl, 'rb') as f:
|
36 |
-
self.embeddings_dict = pickle.load(f)
|
37 |
-
self.data['embedding'] = self.data['Sequence'].map(self.embeddings_dict)
|
38 |
-
|
39 |
-
# Ensure sequences and embeddings are of the same length
|
40 |
-
assert len(self.data) == len(self.data['embedding']), "CSV data and embeddings length mismatch"
|
41 |
-
|
42 |
-
# Create multi-class label list
|
43 |
-
self.data['label'] = self.data.iloc[:, 1:9].value.tolist()
|
44 |
-
|
45 |
-
def __len__(self):
|
46 |
-
return len(self.data)
|
47 |
-
|
48 |
-
def __getitem__(self, idx):
|
49 |
-
embeddings = torch.tensor(self.data['embedding'][idx], dtype=torch.float)
|
50 |
-
labels = torch.tensor(self.data['label'][idx], dtype=torch.long)
|
51 |
-
|
52 |
-
return embeddings, labels
|
53 |
-
|
54 |
-
# Multi-class localization predictor
|
55 |
-
class LocalizationPredictor(nn.Module):
|
56 |
-
def __init__(self, input_dim, num_classes):
|
57 |
-
super(LocalizationPredictor, self).__init__()
|
58 |
-
self.classifier = nn.Linear(input_dim, num_classes) # 1280 x 8
|
59 |
-
|
60 |
-
def forward(self, embeddings):
|
61 |
-
avg_embedding = torch.mean(embeddings, dim=0) # Average embedding dimension: 1280
|
62 |
-
logits = self.classifier(avg_embedding)
|
63 |
-
return logits # pass logits of dimension 1x8 (8-class distribution) to CE loss
|
64 |
-
|
65 |
-
# Training function
|
66 |
-
def train(model, dataloader, optimizer, criterion, device):
|
67 |
-
model.train()
|
68 |
-
total_loss = 0
|
69 |
-
for embeddings, labels in tqdm(dataloader):
|
70 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
71 |
-
optimizer.zero_grad()
|
72 |
-
outputs = model(embeddings)
|
73 |
-
loss = criterion(outputs, labels)
|
74 |
-
loss.backward()
|
75 |
-
optimizer.step()
|
76 |
-
total_loss += loss.item()
|
77 |
-
return total_loss / len(dataloader)
|
78 |
-
|
79 |
-
# Evaluation function
|
80 |
-
def evaluate(model, dataloader, device):
|
81 |
-
model.eval()
|
82 |
-
preds, true_labels = [], []
|
83 |
-
with torch.no_grad():
|
84 |
-
for embeddings, labels in tqdm(dataloader):
|
85 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
86 |
-
outputs = model(embeddings)
|
87 |
-
preds.append(outputs.cpu().numpy())
|
88 |
-
true_labels.append(labels.cpu().numpy())
|
89 |
-
return preds, true_labels
|
90 |
-
|
91 |
-
# Metrics calculation
|
92 |
-
def calculate_metrics(preds, labels, threshold=0.5):
|
93 |
-
flat_binary_preds, flat_labels = [], []
|
94 |
-
|
95 |
-
for pred, label in zip(preds, labels):
|
96 |
-
flat_binary_preds.extend((pred > threshold).astype(int).flatten())
|
97 |
-
flat_labels.extend(label.flatten())
|
98 |
-
|
99 |
-
flat_binary_preds = np.array(flat_binary_preds)
|
100 |
-
flat_labels = np.array(flat_labels)
|
101 |
-
|
102 |
-
accuracy = accuracy_score(flat_labels, flat_binary_preds)
|
103 |
-
precision = precision_score(flat_labels, flat_binary_preds, average='macro')
|
104 |
-
recall = recall_score(flat_labels, flat_binary_preds, average='macro')
|
105 |
-
f1 = f1_score(flat_labels, flat_binary_preds, average='macro')
|
106 |
-
|
107 |
-
return accuracy, precision, recall, f1
|
108 |
-
|
109 |
-
|
110 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
111 |
-
|
112 |
-
train_dataset = LocalizationDataset(hyperparams["train_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
113 |
-
test_dataset = LocalizationDataset(hyperparams["test_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
114 |
-
|
115 |
-
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
|
116 |
-
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
117 |
-
|
118 |
-
model = LocalizationPredictor(input_dim=1280, num_classes=8).to(device)
|
119 |
-
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
|
120 |
-
criterion = nn.CrossEntropyLoss()
|
121 |
-
|
122 |
-
# Train the model
|
123 |
-
for epoch in range(hyperparams["num_epochs"]):
|
124 |
-
train_loss = train(model, train_dataloader, optimizer, criterion, device)
|
125 |
-
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
|
126 |
-
print(f"TRAIN LOSS: {train_loss:.4f}")
|
127 |
-
print("\n")
|
128 |
-
|
129 |
-
# Evaluate model on test dataset
|
130 |
-
print("Test set")
|
131 |
-
test_preds, test_labels = evaluate(model, test_dataloader, device)
|
132 |
-
test_metrics = calculate_metrics(test_preds, test_labels)
|
133 |
-
print("TEST METRICS:")
|
134 |
-
print(f"Accuracy: {test_metrics[0]:.4f}")
|
135 |
-
print(f"Precision: {test_metrics[1]:.4f}")
|
136 |
-
print(f"Recall: {test_metrics[2]:.4f}")
|
137 |
-
print(f"F1 Score: {test_metrics[3]:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/cell_localization_test.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/DeepLoc/cell_localization_train_val.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:29a07b293fed2994a966b70bdcd6bacc59915b8b01fa200cb2b07d8db18384a2
|
3 |
-
size 17724293
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/membrane_localization_predictor.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
-
from torch.utils.data import DataLoader, Dataset
|
5 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
6 |
-
|
7 |
-
from tqdm import tqdm
|
8 |
-
from datetime import datetime
|
9 |
-
import pandas as pd
|
10 |
-
import numpy as np
|
11 |
-
import pickle
|
12 |
-
import os
|
13 |
-
|
14 |
-
# Hyperparameters dictionary
|
15 |
-
path = "/home/a03-sgoel/MDpLM"
|
16 |
-
|
17 |
-
hyperparams = {
|
18 |
-
"batch_size": 1,
|
19 |
-
"learning_rate": 4e-5,
|
20 |
-
"num_epochs": 5,
|
21 |
-
"max_length": 2000,
|
22 |
-
"train_data": path + "/benchmarks/membrane_type_train.csv",
|
23 |
-
"test_data" : path + "/benchmarks/membrane_type_test.csv",
|
24 |
-
"val_data": "", # none
|
25 |
-
"embeddings_pkl": "" # Need to generate ESM embeddings
|
26 |
-
}
|
27 |
-
|
28 |
-
# Dataset class can load pickle file
|
29 |
-
class LocalizationDataset(Dataset):
|
30 |
-
def __init__(self, csv_file, embeddings_pkl, max_length=2000):
|
31 |
-
self.data = pd.read_csv(csv_file)
|
32 |
-
self.max_length = max_length
|
33 |
-
|
34 |
-
# Map sequences to embeddings
|
35 |
-
with open(embeddings_pkl, 'rb') as f:
|
36 |
-
self.embeddings_dict = pickle.load(f)
|
37 |
-
self.data['embedding'] = self.data['Sequence'].map(self.embeddings_dict)
|
38 |
-
|
39 |
-
# Ensure sequences and embeddings are of the same length
|
40 |
-
assert len(self.data) == len(self.data['embedding']), "CSV data and embeddings length mismatch"
|
41 |
-
|
42 |
-
# Create multi-class label list
|
43 |
-
self.data['label'] = self.data.iloc[:, 2:7].value.tolist()
|
44 |
-
|
45 |
-
def __len__(self):
|
46 |
-
return len(self.data)
|
47 |
-
|
48 |
-
def __getitem__(self, idx):
|
49 |
-
embeddings = torch.tensor(self.data['embedding'][idx], dtype=torch.float)
|
50 |
-
labels = torch.tensor(self.data['label'][idx], dtype=torch.long)
|
51 |
-
|
52 |
-
return embeddings, labels
|
53 |
-
|
54 |
-
# Multi-class localization predictor
|
55 |
-
class LocalizationPredictor(nn.Module):
|
56 |
-
def __init__(self, input_dim, num_classes):
|
57 |
-
super(LocalizationPredictor, self).__init__()
|
58 |
-
self.classifier = nn.Linear(input_dim, num_classes) # 1280 x 4
|
59 |
-
|
60 |
-
def forward(self, embeddings):
|
61 |
-
avg_embedding = torch.mean(embeddings, dim=0) # Average embedding dimension: 1280
|
62 |
-
logits = self.classifier(avg_embedding)
|
63 |
-
return logits # pass logits of dimension 1x4 (4-class distribution) to CE loss
|
64 |
-
|
65 |
-
# Training function
|
66 |
-
def train(model, dataloader, optimizer, criterion, device):
|
67 |
-
model.train()
|
68 |
-
total_loss = 0
|
69 |
-
for embeddings, labels in tqdm(dataloader):
|
70 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
71 |
-
optimizer.zero_grad()
|
72 |
-
outputs = model(embeddings)
|
73 |
-
loss = criterion(outputs, labels)
|
74 |
-
loss.backward()
|
75 |
-
optimizer.step()
|
76 |
-
total_loss += loss.item()
|
77 |
-
return total_loss / len(dataloader)
|
78 |
-
|
79 |
-
# Evaluation function
|
80 |
-
def evaluate(model, dataloader, device):
|
81 |
-
model.eval()
|
82 |
-
preds, true_labels = [], []
|
83 |
-
with torch.no_grad():
|
84 |
-
for embeddings, labels in tqdm(dataloader):
|
85 |
-
embeddings, labels = embeddings.to(device), labels.to(device)
|
86 |
-
outputs = model(embeddings)
|
87 |
-
preds.append(outputs.cpu().numpy())
|
88 |
-
true_labels.append(labels.cpu().numpy())
|
89 |
-
return preds, true_labels
|
90 |
-
|
91 |
-
# Metrics calculation
|
92 |
-
def calculate_metrics(preds, labels, threshold=0.5):
|
93 |
-
flat_binary_preds, flat_labels = [], []
|
94 |
-
|
95 |
-
for pred, label in zip(preds, labels):
|
96 |
-
flat_binary_preds.extend((pred > threshold).astype(int).flatten())
|
97 |
-
flat_labels.extend(label.flatten())
|
98 |
-
|
99 |
-
flat_binary_preds = np.array(flat_binary_preds)
|
100 |
-
flat_labels = np.array(flat_labels)
|
101 |
-
|
102 |
-
accuracy = accuracy_score(flat_labels, flat_binary_preds)
|
103 |
-
precision = precision_score(flat_labels, flat_binary_preds, average='macro')
|
104 |
-
recall = recall_score(flat_labels, flat_binary_preds, average='macro')
|
105 |
-
f1 = f1_score(flat_labels, flat_binary_preds, average='macro')
|
106 |
-
|
107 |
-
return accuracy, precision, recall, f1
|
108 |
-
|
109 |
-
|
110 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
111 |
-
|
112 |
-
train_dataset = LocalizationDataset(hyperparams["train_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
113 |
-
test_dataset = LocalizationDataset(hyperparams["test_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
|
114 |
-
|
115 |
-
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
|
116 |
-
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
|
117 |
-
|
118 |
-
model = LocalizationPredictor(input_dim=1280, num_classes=4).to(device)
|
119 |
-
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
|
120 |
-
criterion = nn.CrossEntropyLoss()
|
121 |
-
|
122 |
-
# Train the model
|
123 |
-
for epoch in range(hyperparams["num_epochs"]):
|
124 |
-
train_loss = train(model, train_dataloader, optimizer, criterion, device)
|
125 |
-
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
|
126 |
-
print(f"TRAIN LOSS: {train_loss:.4f}")
|
127 |
-
print("\n")
|
128 |
-
|
129 |
-
# Evaluate model on test dataset
|
130 |
-
print("Test set")
|
131 |
-
test_preds, test_labels = evaluate(model, test_dataloader, device)
|
132 |
-
test_metrics = calculate_metrics(test_preds, test_labels)
|
133 |
-
print("TEST METRICS:")
|
134 |
-
print(f"Accuracy: {test_metrics[0]:.4f}")
|
135 |
-
print(f"Precision: {test_metrics[1]:.4f}")
|
136 |
-
print(f"Recall: {test_metrics[2]:.4f}")
|
137 |
-
print(f"F1 Score: {test_metrics[3]:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/membrane_type_test.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
benchmarks/DeepLoc/membrane_type_train.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:16b8eec677afa2de578d04ee1a0fc9582b2f8cfc47622cbd6374309cd6ab96f3
|
3 |
-
size 12335695
|
|
|
|
|
|
|
|
benchmarks/DeepLoc/prep_deeploc_benchmark_data.ipynb
DELETED
@@ -1,488 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 3,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import pandas as pd"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "code",
|
14 |
-
"execution_count": 1,
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"path = \"/home/a03-sgoel/mESMerize/benchmarks/DeepLoc\""
|
19 |
-
]
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"cell_type": "code",
|
23 |
-
"execution_count": 7,
|
24 |
-
"metadata": {},
|
25 |
-
"outputs": [
|
26 |
-
{
|
27 |
-
"data": {
|
28 |
-
"text/html": [
|
29 |
-
"<div>\n",
|
30 |
-
"<style scoped>\n",
|
31 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
32 |
-
" vertical-align: middle;\n",
|
33 |
-
" }\n",
|
34 |
-
"\n",
|
35 |
-
" .dataframe tbody tr th {\n",
|
36 |
-
" vertical-align: top;\n",
|
37 |
-
" }\n",
|
38 |
-
"\n",
|
39 |
-
" .dataframe thead th {\n",
|
40 |
-
" text-align: right;\n",
|
41 |
-
" }\n",
|
42 |
-
"</style>\n",
|
43 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
44 |
-
" <thead>\n",
|
45 |
-
" <tr style=\"text-align: right;\">\n",
|
46 |
-
" <th></th>\n",
|
47 |
-
" <th>Unnamed: 0</th>\n",
|
48 |
-
" <th>ACC</th>\n",
|
49 |
-
" <th>Kingdom</th>\n",
|
50 |
-
" <th>Partition</th>\n",
|
51 |
-
" <th>Peripheral</th>\n",
|
52 |
-
" <th>Transmembrane</th>\n",
|
53 |
-
" <th>LipidAnchor</th>\n",
|
54 |
-
" <th>Soluble</th>\n",
|
55 |
-
" <th>Sequence</th>\n",
|
56 |
-
" </tr>\n",
|
57 |
-
" </thead>\n",
|
58 |
-
" <tbody>\n",
|
59 |
-
" <tr>\n",
|
60 |
-
" <th>0</th>\n",
|
61 |
-
" <td>0</td>\n",
|
62 |
-
" <td>I3R9M8</td>\n",
|
63 |
-
" <td>Archaea</td>\n",
|
64 |
-
" <td>0</td>\n",
|
65 |
-
" <td>1</td>\n",
|
66 |
-
" <td>0</td>\n",
|
67 |
-
" <td>0</td>\n",
|
68 |
-
" <td>0</td>\n",
|
69 |
-
" <td>MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG...</td>\n",
|
70 |
-
" </tr>\n",
|
71 |
-
" <tr>\n",
|
72 |
-
" <th>1</th>\n",
|
73 |
-
" <td>1</td>\n",
|
74 |
-
" <td>I3R9M9</td>\n",
|
75 |
-
" <td>Archaea</td>\n",
|
76 |
-
" <td>1</td>\n",
|
77 |
-
" <td>1</td>\n",
|
78 |
-
" <td>0</td>\n",
|
79 |
-
" <td>0</td>\n",
|
80 |
-
" <td>0</td>\n",
|
81 |
-
" <td>MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR...</td>\n",
|
82 |
-
" </tr>\n",
|
83 |
-
" <tr>\n",
|
84 |
-
" <th>2</th>\n",
|
85 |
-
" <td>2</td>\n",
|
86 |
-
" <td>Q7ZAG8</td>\n",
|
87 |
-
" <td>Archaea</td>\n",
|
88 |
-
" <td>2</td>\n",
|
89 |
-
" <td>1</td>\n",
|
90 |
-
" <td>0</td>\n",
|
91 |
-
" <td>0</td>\n",
|
92 |
-
" <td>0</td>\n",
|
93 |
-
" <td>MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP...</td>\n",
|
94 |
-
" </tr>\n",
|
95 |
-
" <tr>\n",
|
96 |
-
" <th>3</th>\n",
|
97 |
-
" <td>3</td>\n",
|
98 |
-
" <td>Q8PZ67</td>\n",
|
99 |
-
" <td>Archaea</td>\n",
|
100 |
-
" <td>0</td>\n",
|
101 |
-
" <td>1</td>\n",
|
102 |
-
" <td>0</td>\n",
|
103 |
-
" <td>0</td>\n",
|
104 |
-
" <td>1</td>\n",
|
105 |
-
" <td>MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY...</td>\n",
|
106 |
-
" </tr>\n",
|
107 |
-
" <tr>\n",
|
108 |
-
" <th>4</th>\n",
|
109 |
-
" <td>4</td>\n",
|
110 |
-
" <td>Q9YGA6</td>\n",
|
111 |
-
" <td>Archaea</td>\n",
|
112 |
-
" <td>0</td>\n",
|
113 |
-
" <td>1</td>\n",
|
114 |
-
" <td>0</td>\n",
|
115 |
-
" <td>0</td>\n",
|
116 |
-
" <td>0</td>\n",
|
117 |
-
" <td>MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL...</td>\n",
|
118 |
-
" </tr>\n",
|
119 |
-
" <tr>\n",
|
120 |
-
" <th>...</th>\n",
|
121 |
-
" <td>...</td>\n",
|
122 |
-
" <td>...</td>\n",
|
123 |
-
" <td>...</td>\n",
|
124 |
-
" <td>...</td>\n",
|
125 |
-
" <td>...</td>\n",
|
126 |
-
" <td>...</td>\n",
|
127 |
-
" <td>...</td>\n",
|
128 |
-
" <td>...</td>\n",
|
129 |
-
" <td>...</td>\n",
|
130 |
-
" </tr>\n",
|
131 |
-
" <tr>\n",
|
132 |
-
" <th>28021</th>\n",
|
133 |
-
" <td>28021</td>\n",
|
134 |
-
" <td>P86949</td>\n",
|
135 |
-
" <td>Eukaryota</td>\n",
|
136 |
-
" <td>0</td>\n",
|
137 |
-
" <td>0</td>\n",
|
138 |
-
" <td>0</td>\n",
|
139 |
-
" <td>0</td>\n",
|
140 |
-
" <td>1</td>\n",
|
141 |
-
" <td>MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY...</td>\n",
|
142 |
-
" </tr>\n",
|
143 |
-
" <tr>\n",
|
144 |
-
" <th>28022</th>\n",
|
145 |
-
" <td>28022</td>\n",
|
146 |
-
" <td>P86950</td>\n",
|
147 |
-
" <td>Eukaryota</td>\n",
|
148 |
-
" <td>0</td>\n",
|
149 |
-
" <td>0</td>\n",
|
150 |
-
" <td>0</td>\n",
|
151 |
-
" <td>0</td>\n",
|
152 |
-
" <td>1</td>\n",
|
153 |
-
" <td>MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG...</td>\n",
|
154 |
-
" </tr>\n",
|
155 |
-
" <tr>\n",
|
156 |
-
" <th>28023</th>\n",
|
157 |
-
" <td>28023</td>\n",
|
158 |
-
" <td>P86951</td>\n",
|
159 |
-
" <td>Eukaryota</td>\n",
|
160 |
-
" <td>0</td>\n",
|
161 |
-
" <td>0</td>\n",
|
162 |
-
" <td>0</td>\n",
|
163 |
-
" <td>0</td>\n",
|
164 |
-
" <td>1</td>\n",
|
165 |
-
" <td>MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG...</td>\n",
|
166 |
-
" </tr>\n",
|
167 |
-
" <tr>\n",
|
168 |
-
" <th>28024</th>\n",
|
169 |
-
" <td>28024</td>\n",
|
170 |
-
" <td>P86983</td>\n",
|
171 |
-
" <td>Eukaryota</td>\n",
|
172 |
-
" <td>3</td>\n",
|
173 |
-
" <td>0</td>\n",
|
174 |
-
" <td>0</td>\n",
|
175 |
-
" <td>0</td>\n",
|
176 |
-
" <td>1</td>\n",
|
177 |
-
" <td>MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL...</td>\n",
|
178 |
-
" </tr>\n",
|
179 |
-
" <tr>\n",
|
180 |
-
" <th>28025</th>\n",
|
181 |
-
" <td>28025</td>\n",
|
182 |
-
" <td>P86984</td>\n",
|
183 |
-
" <td>Eukaryota</td>\n",
|
184 |
-
" <td>4</td>\n",
|
185 |
-
" <td>0</td>\n",
|
186 |
-
" <td>0</td>\n",
|
187 |
-
" <td>0</td>\n",
|
188 |
-
" <td>1</td>\n",
|
189 |
-
" <td>MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL...</td>\n",
|
190 |
-
" </tr>\n",
|
191 |
-
" </tbody>\n",
|
192 |
-
"</table>\n",
|
193 |
-
"<p>28026 rows × 9 columns</p>\n",
|
194 |
-
"</div>"
|
195 |
-
],
|
196 |
-
"text/plain": [
|
197 |
-
" Unnamed: 0 ACC Kingdom Partition Peripheral Transmembrane \\\n",
|
198 |
-
"0 0 I3R9M8 Archaea 0 1 0 \n",
|
199 |
-
"1 1 I3R9M9 Archaea 1 1 0 \n",
|
200 |
-
"2 2 Q7ZAG8 Archaea 2 1 0 \n",
|
201 |
-
"3 3 Q8PZ67 Archaea 0 1 0 \n",
|
202 |
-
"4 4 Q9YGA6 Archaea 0 1 0 \n",
|
203 |
-
"... ... ... ... ... ... ... \n",
|
204 |
-
"28021 28021 P86949 Eukaryota 0 0 0 \n",
|
205 |
-
"28022 28022 P86950 Eukaryota 0 0 0 \n",
|
206 |
-
"28023 28023 P86951 Eukaryota 0 0 0 \n",
|
207 |
-
"28024 28024 P86983 Eukaryota 3 0 0 \n",
|
208 |
-
"28025 28025 P86984 Eukaryota 4 0 0 \n",
|
209 |
-
"\n",
|
210 |
-
" LipidAnchor Soluble Sequence \n",
|
211 |
-
"0 0 0 MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG... \n",
|
212 |
-
"1 0 0 MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR... \n",
|
213 |
-
"2 0 0 MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP... \n",
|
214 |
-
"3 0 1 MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY... \n",
|
215 |
-
"4 0 0 MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL... \n",
|
216 |
-
"... ... ... ... \n",
|
217 |
-
"28021 0 1 MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY... \n",
|
218 |
-
"28022 0 1 MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG... \n",
|
219 |
-
"28023 0 1 MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG... \n",
|
220 |
-
"28024 0 1 MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL... \n",
|
221 |
-
"28025 0 1 MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL... \n",
|
222 |
-
"\n",
|
223 |
-
"[28026 rows x 9 columns]"
|
224 |
-
]
|
225 |
-
},
|
226 |
-
"execution_count": 7,
|
227 |
-
"metadata": {},
|
228 |
-
"output_type": "execute_result"
|
229 |
-
}
|
230 |
-
],
|
231 |
-
"source": [
|
232 |
-
"df"
|
233 |
-
]
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"cell_type": "code",
|
237 |
-
"execution_count": 9,
|
238 |
-
"metadata": {},
|
239 |
-
"outputs": [
|
240 |
-
{
|
241 |
-
"data": {
|
242 |
-
"text/html": [
|
243 |
-
"<div>\n",
|
244 |
-
"<style scoped>\n",
|
245 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
246 |
-
" vertical-align: middle;\n",
|
247 |
-
" }\n",
|
248 |
-
"\n",
|
249 |
-
" .dataframe tbody tr th {\n",
|
250 |
-
" vertical-align: top;\n",
|
251 |
-
" }\n",
|
252 |
-
"\n",
|
253 |
-
" .dataframe thead th {\n",
|
254 |
-
" text-align: right;\n",
|
255 |
-
" }\n",
|
256 |
-
"</style>\n",
|
257 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
258 |
-
" <thead>\n",
|
259 |
-
" <tr style=\"text-align: right;\">\n",
|
260 |
-
" <th></th>\n",
|
261 |
-
" <th>ACC</th>\n",
|
262 |
-
" <th>Kingdom</th>\n",
|
263 |
-
" <th>Partition</th>\n",
|
264 |
-
" <th>Peripheral</th>\n",
|
265 |
-
" <th>Transmembrane</th>\n",
|
266 |
-
" <th>LipidAnchor</th>\n",
|
267 |
-
" <th>Soluble</th>\n",
|
268 |
-
" <th>Sequence</th>\n",
|
269 |
-
" </tr>\n",
|
270 |
-
" </thead>\n",
|
271 |
-
" <tbody>\n",
|
272 |
-
" <tr>\n",
|
273 |
-
" <th>0</th>\n",
|
274 |
-
" <td>I3R9M8</td>\n",
|
275 |
-
" <td>Archaea</td>\n",
|
276 |
-
" <td>0</td>\n",
|
277 |
-
" <td>1</td>\n",
|
278 |
-
" <td>0</td>\n",
|
279 |
-
" <td>0</td>\n",
|
280 |
-
" <td>0</td>\n",
|
281 |
-
" <td>MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG...</td>\n",
|
282 |
-
" </tr>\n",
|
283 |
-
" <tr>\n",
|
284 |
-
" <th>1</th>\n",
|
285 |
-
" <td>I3R9M9</td>\n",
|
286 |
-
" <td>Archaea</td>\n",
|
287 |
-
" <td>1</td>\n",
|
288 |
-
" <td>1</td>\n",
|
289 |
-
" <td>0</td>\n",
|
290 |
-
" <td>0</td>\n",
|
291 |
-
" <td>0</td>\n",
|
292 |
-
" <td>MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR...</td>\n",
|
293 |
-
" </tr>\n",
|
294 |
-
" <tr>\n",
|
295 |
-
" <th>2</th>\n",
|
296 |
-
" <td>Q7ZAG8</td>\n",
|
297 |
-
" <td>Archaea</td>\n",
|
298 |
-
" <td>2</td>\n",
|
299 |
-
" <td>1</td>\n",
|
300 |
-
" <td>0</td>\n",
|
301 |
-
" <td>0</td>\n",
|
302 |
-
" <td>0</td>\n",
|
303 |
-
" <td>MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP...</td>\n",
|
304 |
-
" </tr>\n",
|
305 |
-
" <tr>\n",
|
306 |
-
" <th>3</th>\n",
|
307 |
-
" <td>Q8PZ67</td>\n",
|
308 |
-
" <td>Archaea</td>\n",
|
309 |
-
" <td>0</td>\n",
|
310 |
-
" <td>1</td>\n",
|
311 |
-
" <td>0</td>\n",
|
312 |
-
" <td>0</td>\n",
|
313 |
-
" <td>1</td>\n",
|
314 |
-
" <td>MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY...</td>\n",
|
315 |
-
" </tr>\n",
|
316 |
-
" <tr>\n",
|
317 |
-
" <th>4</th>\n",
|
318 |
-
" <td>Q9YGA6</td>\n",
|
319 |
-
" <td>Archaea</td>\n",
|
320 |
-
" <td>0</td>\n",
|
321 |
-
" <td>1</td>\n",
|
322 |
-
" <td>0</td>\n",
|
323 |
-
" <td>0</td>\n",
|
324 |
-
" <td>0</td>\n",
|
325 |
-
" <td>MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL...</td>\n",
|
326 |
-
" </tr>\n",
|
327 |
-
" <tr>\n",
|
328 |
-
" <th>...</th>\n",
|
329 |
-
" <td>...</td>\n",
|
330 |
-
" <td>...</td>\n",
|
331 |
-
" <td>...</td>\n",
|
332 |
-
" <td>...</td>\n",
|
333 |
-
" <td>...</td>\n",
|
334 |
-
" <td>...</td>\n",
|
335 |
-
" <td>...</td>\n",
|
336 |
-
" <td>...</td>\n",
|
337 |
-
" </tr>\n",
|
338 |
-
" <tr>\n",
|
339 |
-
" <th>28021</th>\n",
|
340 |
-
" <td>P86949</td>\n",
|
341 |
-
" <td>Eukaryota</td>\n",
|
342 |
-
" <td>0</td>\n",
|
343 |
-
" <td>0</td>\n",
|
344 |
-
" <td>0</td>\n",
|
345 |
-
" <td>0</td>\n",
|
346 |
-
" <td>1</td>\n",
|
347 |
-
" <td>MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY...</td>\n",
|
348 |
-
" </tr>\n",
|
349 |
-
" <tr>\n",
|
350 |
-
" <th>28022</th>\n",
|
351 |
-
" <td>P86950</td>\n",
|
352 |
-
" <td>Eukaryota</td>\n",
|
353 |
-
" <td>0</td>\n",
|
354 |
-
" <td>0</td>\n",
|
355 |
-
" <td>0</td>\n",
|
356 |
-
" <td>0</td>\n",
|
357 |
-
" <td>1</td>\n",
|
358 |
-
" <td>MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG...</td>\n",
|
359 |
-
" </tr>\n",
|
360 |
-
" <tr>\n",
|
361 |
-
" <th>28023</th>\n",
|
362 |
-
" <td>P86951</td>\n",
|
363 |
-
" <td>Eukaryota</td>\n",
|
364 |
-
" <td>0</td>\n",
|
365 |
-
" <td>0</td>\n",
|
366 |
-
" <td>0</td>\n",
|
367 |
-
" <td>0</td>\n",
|
368 |
-
" <td>1</td>\n",
|
369 |
-
" <td>MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG...</td>\n",
|
370 |
-
" </tr>\n",
|
371 |
-
" <tr>\n",
|
372 |
-
" <th>28024</th>\n",
|
373 |
-
" <td>P86983</td>\n",
|
374 |
-
" <td>Eukaryota</td>\n",
|
375 |
-
" <td>3</td>\n",
|
376 |
-
" <td>0</td>\n",
|
377 |
-
" <td>0</td>\n",
|
378 |
-
" <td>0</td>\n",
|
379 |
-
" <td>1</td>\n",
|
380 |
-
" <td>MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL...</td>\n",
|
381 |
-
" </tr>\n",
|
382 |
-
" <tr>\n",
|
383 |
-
" <th>28025</th>\n",
|
384 |
-
" <td>P86984</td>\n",
|
385 |
-
" <td>Eukaryota</td>\n",
|
386 |
-
" <td>4</td>\n",
|
387 |
-
" <td>0</td>\n",
|
388 |
-
" <td>0</td>\n",
|
389 |
-
" <td>0</td>\n",
|
390 |
-
" <td>1</td>\n",
|
391 |
-
" <td>MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL...</td>\n",
|
392 |
-
" </tr>\n",
|
393 |
-
" </tbody>\n",
|
394 |
-
"</table>\n",
|
395 |
-
"<p>28026 rows × 8 columns</p>\n",
|
396 |
-
"</div>"
|
397 |
-
],
|
398 |
-
"text/plain": [
|
399 |
-
" ACC Kingdom Partition Peripheral Transmembrane LipidAnchor \\\n",
|
400 |
-
"0 I3R9M8 Archaea 0 1 0 0 \n",
|
401 |
-
"1 I3R9M9 Archaea 1 1 0 0 \n",
|
402 |
-
"2 Q7ZAG8 Archaea 2 1 0 0 \n",
|
403 |
-
"3 Q8PZ67 Archaea 0 1 0 0 \n",
|
404 |
-
"4 Q9YGA6 Archaea 0 1 0 0 \n",
|
405 |
-
"... ... ... ... ... ... ... \n",
|
406 |
-
"28021 P86949 Eukaryota 0 0 0 0 \n",
|
407 |
-
"28022 P86950 Eukaryota 0 0 0 0 \n",
|
408 |
-
"28023 P86951 Eukaryota 0 0 0 0 \n",
|
409 |
-
"28024 P86983 Eukaryota 3 0 0 0 \n",
|
410 |
-
"28025 P86984 Eukaryota 4 0 0 0 \n",
|
411 |
-
"\n",
|
412 |
-
" Soluble Sequence \n",
|
413 |
-
"0 0 MSTDSDAETVDLADGVDHQVAMVMDLNKCIGCQTCTVACKSLWTEG... \n",
|
414 |
-
"1 0 MSRNDASQLDDGETTAESPPDDQANDAPEVGDPPGDPVDADSGVSR... \n",
|
415 |
-
"2 0 MTKVLVLGGRFGALTAAYTLKRLVGSKADVKVINKSRFSYFRPALP... \n",
|
416 |
-
"3 1 MPPKIAEVIQHDVCAACGACEAVCPIGAVTVKKAAEIRDPNDLSLY... \n",
|
417 |
-
"4 0 MAGVRLVDVWKVFGEVTAVREMSLEVKDGEFMILLGPSGCGKTTTL... \n",
|
418 |
-
"... ... ... \n",
|
419 |
-
"28021 1 MLRFIAIVALIATVNAKGGTYGIGVLPSVTYVSGGGGGYPGIYGTY... \n",
|
420 |
-
"28022 1 MKPFISLASLIVLIASASAGGDDDYGKYGYGSYGPGIGGIGGGGGG... \n",
|
421 |
-
"28023 1 MLKLVCAVVLIATVNAKGSSPGFGIGQLPGITVVSGGVSGGSLSGG... \n",
|
422 |
-
"28024 1 MHQSSLGVLVLFSLIYLCISVHVPFDLNGWKALRLDNNRVQDSTNL... \n",
|
423 |
-
"28025 1 MLMLLCIIATVIPFSLVEGRKGCWADPTPPGKECLYGKEIHGGRNL... \n",
|
424 |
-
"\n",
|
425 |
-
"[28026 rows x 8 columns]"
|
426 |
-
]
|
427 |
-
},
|
428 |
-
"execution_count": 9,
|
429 |
-
"metadata": {},
|
430 |
-
"output_type": "execute_result"
|
431 |
-
}
|
432 |
-
],
|
433 |
-
"source": [
|
434 |
-
"df = pd.read_csv(path + \"/OG_membrane_type_all.csv\")\n",
|
435 |
-
"df = df.drop(columns=['Unnamed: 0'])\n",
|
436 |
-
"df"
|
437 |
-
]
|
438 |
-
},
|
439 |
-
{
|
440 |
-
"cell_type": "code",
|
441 |
-
"execution_count": 14,
|
442 |
-
"metadata": {},
|
443 |
-
"outputs": [],
|
444 |
-
"source": [
|
445 |
-
"train = df[df['Partition'] != 4]\n",
|
446 |
-
"test = df[df['Partition'] == 4]"
|
447 |
-
]
|
448 |
-
},
|
449 |
-
{
|
450 |
-
"cell_type": "code",
|
451 |
-
"execution_count": 17,
|
452 |
-
"metadata": {},
|
453 |
-
"outputs": [],
|
454 |
-
"source": [
|
455 |
-
"train.to_csv(path + \"/membrane_type_train.csv\", index=False)\n",
|
456 |
-
"test.to_csv(path + \"/membrane_type_test.csv\", index=False)"
|
457 |
-
]
|
458 |
-
},
|
459 |
-
{
|
460 |
-
"cell_type": "code",
|
461 |
-
"execution_count": null,
|
462 |
-
"metadata": {},
|
463 |
-
"outputs": [],
|
464 |
-
"source": []
|
465 |
-
}
|
466 |
-
],
|
467 |
-
"metadata": {
|
468 |
-
"kernelspec": {
|
469 |
-
"display_name": "Python 3",
|
470 |
-
"language": "python",
|
471 |
-
"name": "python3"
|
472 |
-
},
|
473 |
-
"language_info": {
|
474 |
-
"codemirror_mode": {
|
475 |
-
"name": "ipython",
|
476 |
-
"version": 3
|
477 |
-
},
|
478 |
-
"file_extension": ".py",
|
479 |
-
"mimetype": "text/x-python",
|
480 |
-
"name": "python",
|
481 |
-
"nbconvert_exporter": "python",
|
482 |
-
"pygments_lexer": "ipython3",
|
483 |
-
"version": "3.10.12"
|
484 |
-
}
|
485 |
-
},
|
486 |
-
"nbformat": 4,
|
487 |
-
"nbformat_minor": 2
|
488 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|