|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from torch.utils.data import DataLoader, Dataset |
|
from transformers import AutoModel, AutoTokenizer |
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score |
|
|
|
from tqdm import tqdm |
|
from datetime import datetime |
|
import pandas as pd |
|
import numpy as np |
|
import pickle |
|
import os |
|
|
|
|
|
path = "/workspace/sg666/MDpLM" |
|
|
|
hyperparams = { |
|
"batch_size": 1, |
|
"learning_rate": 5e-4, |
|
"num_epochs": 5, |
|
"esm_model_path": "facebook/esm2_t33_650M_UR50D", |
|
'mlm_model_path': path + "/benchmarks/MLM/model_ckpts/best_model_epoch", |
|
"mdlm_model_path": path + "/checkpoints/membrane_automodel/epochs30_lr3e-4_bsz16_gradclip1_beta-one0.9_beta-two0.999_bf16_all-params", |
|
"train_data": path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_train-val.csv", |
|
"test_data" : path + "/benchmarks/Supervised/Localization/true_deeploc2.0_cell-local_test.csv", |
|
} |
|
|
|
|
|
def load_models(esm_model_path, mlm_model_path, mdlm_model_path): |
|
esm_tokenizer = AutoTokenizer.from_pretrained(esm_model_path) |
|
esm_model = AutoModel.from_pretrained(esm_model_path).to(device) |
|
mlm_model = AutoModel.from_pretrained(mlm_model_path).to(device) |
|
mdlm_model = AutoModel.from_pretrained(mdlm_model_path).to(device) |
|
|
|
return esm_tokenizer, esm_model, mlm_model, mdlm_model |
|
|
|
def get_latents(embedding_type, tokenizer, esm_model, mlm_model, mdlm_model, sequence, device): |
|
if embedding_type == "esm": |
|
inputs = tokenizer(sequence, return_tensors='pt').to(device) |
|
with torch.no_grad(): |
|
embeddings = esm_model(**inputs).last_hidden_state.squeeze(0) |
|
|
|
elif embedding_type == "mlm": |
|
inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device) |
|
with torch.no_grad(): |
|
embeddings = mlm_model(inputs).last_hidden_state.squeeze(0) |
|
|
|
elif embedding_type == "mdlm": |
|
inputs = tokenizer(sequence, return_tensors='pt')['input_ids'].to(device) |
|
with torch.no_grad(): |
|
embeddings = mdlm_model(inputs).last_hidden_state.squeeze(0) |
|
|
|
return embeddings |
|
|
|
|
|
|
|
class LocalizationDataset(Dataset): |
|
def __init__(self, embedding_type, csv_file, esm_model_path, mlm_model_path, mdlm_model_path, device): |
|
self.data = pd.read_csv(csv_file) |
|
self.data = self.data[self.data['Sequence'].apply(len) < 1024].reset_index(drop=True) |
|
self.embedding_type = embedding_type |
|
self.tokenizer, self.esm_model, self.mlm_model, self.mdlm_model = load_models(esm_model_path, mlm_model_path, mdlm_model_path) |
|
self.device = device |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
sequence = self.data.iloc[idx]['Sequence'] |
|
embeddings = get_latents(self.embedding_type, self.tokenizer, self.mlm_model, self.esm_model, self.mdlm_model, |
|
sequence, self.device) |
|
|
|
label = 0 if self.data.iloc[idx]['Cell membrane'] == 0 else 1 |
|
labels = torch.tensor(label, dtype=torch.float32).view(1,1).squeeze(-1) |
|
|
|
return embeddings, labels |
|
|
|
|
|
class LocalizationPredictor(nn.Module): |
|
def __init__(self, input_dim): |
|
super(LocalizationPredictor, self).__init__() |
|
self.classifier = nn.Sequential( |
|
nn.Linear(input_dim, 640), |
|
nn.ReLU(), |
|
nn.Linear(640, 1) |
|
) |
|
|
|
def forward(self, embeddings): |
|
logits = self.classifier(embeddings) |
|
logits = torch.mean(logits, dim=1) |
|
probs = torch.nn.functional.softmax(logits) |
|
return probs |
|
|
|
|
|
def train(model, dataloader, optimizer, criterion, device): |
|
model.train() |
|
total_loss = 0 |
|
for embeddings, labels in tqdm(dataloader): |
|
embeddings, labels = embeddings.to(device), labels.to(device) |
|
optimizer.zero_grad() |
|
outputs = model(embeddings) |
|
loss = criterion(outputs, labels) |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
return total_loss / len(dataloader) |
|
|
|
|
|
def evaluate(model, dataloader, device): |
|
model.eval() |
|
preds, true_labels = [], [] |
|
with torch.no_grad(): |
|
for embeddings, labels in tqdm(dataloader): |
|
embeddings, labels = embeddings.to(device), labels.to(device) |
|
outputs = model(embeddings) |
|
preds.append(outputs.cpu().numpy()) |
|
true_labels.append(labels.cpu().numpy()) |
|
return preds, true_labels |
|
|
|
|
|
def calculate_metrics(preds, labels, threshold=0.5): |
|
all_metrics = [] |
|
for pred, label in zip(preds, labels): |
|
pred = (pred > threshold).astype(int) |
|
|
|
accuracy = accuracy_score(label, pred) |
|
precision = precision_score(label, pred, average='macro') |
|
recall = recall_score(label, pred, average='macro') |
|
f1_macro = f1_score(label, pred, average='macro') |
|
f1_micro = f1_score(label, pred, average='micro') |
|
|
|
all_metrics.append([accuracy, precision, recall, f1_macro, f1_micro]) |
|
|
|
avg_metrics = np.mean(all_metrics, axis=0) |
|
print(avg_metrics) |
|
return avg_metrics |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
for embedding_type in ['mdlm', 'esm', 'mlm']: |
|
|
|
train_dataset = LocalizationDataset(embedding_type, |
|
hyperparams['train_data'], |
|
hyperparams['esm_model_path'], |
|
hyperparams['mlm_model_path'], |
|
hyperparams['mdlm_model_path'], |
|
device) |
|
test_dataset = LocalizationDataset(embedding_type, |
|
hyperparams['test_data'], |
|
hyperparams['esm_model_path'], |
|
hyperparams['mlm_model_path'], |
|
hyperparams['mdlm_model_path'], |
|
device) |
|
|
|
|
|
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True) |
|
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False) |
|
|
|
|
|
input_dim=640 if embedding_type=="mdlm" else 1280 |
|
model = LocalizationPredictor(input_dim=input_dim).to(device) |
|
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"]) |
|
criterion = nn.BCELoss() |
|
|
|
|
|
base_checkpoint_dir = f"{path}/benchmarks/Supervised/Localization/model_checkpoints/{embedding_type}" |
|
|
|
hyperparam_str = f"batch_{hyperparams['batch_size']}_lr_{hyperparams['learning_rate']}_epochs_{hyperparams['num_epochs']}" |
|
model_checkpoint_dir = os.path.join(base_checkpoint_dir, hyperparam_str) |
|
os.makedirs(model_checkpoint_dir, exist_ok=True) |
|
|
|
|
|
|
|
for epoch in range(hyperparams["num_epochs"]): |
|
|
|
train_loss = train(model, train_dataloader, optimizer, criterion, device) |
|
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}") |
|
print(f"TRAIN LOSS: {train_loss:.4f}") |
|
print("\n") |
|
|
|
|
|
checkpoint_path = os.path.join(model_checkpoint_dir, f"epoch{epoch + 1}.pth") |
|
torch.save({ |
|
'epoch': epoch + 1, |
|
'model_state_dict': model.state_dict(), |
|
'optimizer_state_dict': optimizer.state_dict(), |
|
'loss': train_loss, |
|
}, checkpoint_path) |
|
print(f"Checkpoint saved at {checkpoint_path}\n") |
|
|
|
|
|
if epoch == 0: |
|
hyperparams_file = os.path.join(model_checkpoint_dir, "hyperparams.txt") |
|
with open(hyperparams_file, 'w') as f: |
|
for key, value in hyperparams.items(): |
|
f.write(f"{key}: {value}\n") |
|
print(f"Hyperparameters saved at {hyperparams_file}\n") |
|
|
|
|
|
print("Test set") |
|
test_preds, test_labels = evaluate(model, test_dataloader, device) |
|
test_metrics = calculate_metrics(test_preds, test_labels) |
|
print(test_metrics) |
|
print("TEST METRICS:") |
|
print(f"Accuracy: {test_metrics[0]:.4f}") |
|
print(f"Precision: {test_metrics[1]:.4f}") |
|
print(f"Recall: {test_metrics[2]:.4f}") |
|
print(f"F1 Macro Score: {test_metrics[3]:.4f}") |
|
print(f"F1 Micro Score: {test_metrics[4]:.4f}") |
|
|
|
|
|
test_results_file = os.path.join(model_checkpoint_dir, "test_results.txt") |
|
with open(test_results_file, 'w') as f: |
|
f.write("TEST METRICS:\n") |
|
f.write(f"Accuracy: {test_metrics[0]:.4f}\n") |
|
f.write(f"Precision: {test_metrics[1]:.4f}\n") |
|
f.write(f"Recall: {test_metrics[2]:.4f}\n") |
|
f.write(f"F1 Macro Score: {test_metrics[3]:.4f}\n") |
|
f.write(f"F1 Micro: {test_metrics[4]:.4f}\n") |
|
print(f"Test results saved at {test_results_file}\n") |