|
import pandas as pd |
|
from torch.utils.data import Dataset, DataLoader |
|
from utils.esm_utils import get_latents, load_esm2_model |
|
|
|
class ProteinDataset(Dataset): |
|
def __init__(self, csv_file, tokenizer, model): |
|
self.data = pd.read_csv(csv_file) |
|
self.tokenizer = tokenizer |
|
self.model = model |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
sequence = self.data.iloc[idx]['sequence'] |
|
latents = get_latents(self.model, self.tokenizer, sequence) |
|
return latents |
|
|
|
def get_dataloaders(config): |
|
tokenizer, model = load_esm2_model(config.model_name) |
|
|
|
train_dataset = ProteinDataset(config.data_path + "train.csv", tokenizer, model) |
|
val_dataset = ProteinDataset(config.data_path + "val.csv", tokenizer, model) |
|
test_dataset = ProteinDataset(config.data_path + "test.csv", tokenizer, model) |
|
|
|
train_loader = DataLoader(train_dataset, batch_size=config.training["batch_size"], shuffle=True) |
|
val_loader = DataLoader(val_dataset, batch_size=config.training["batch_size"], shuffle=False) |
|
test_loader = DataLoader(test_dataset, batch_size=config.training["batch_size"], shuffle=False) |
|
|
|
return train_loader, val_loader, test_loader |
|
|