MeMDLM / models /diffusion.py
sgoel30's picture
Upload 3 files
9875b25 verified
raw
history blame
12 kB
import itertools
import math
import torch
import numpy as np
import pytorch_lightning as L
import torchmetrics
from dataclasses import dataclass
import dit, ema
import noise_schedule # Assuming this is part of the MDLM repository
LOG2 = math.log(2)
@dataclass
class Loss:
loss: torch.FloatTensor
nlls: torch.FloatTensor
token_mask: torch.FloatTensor
class NLL(torchmetrics.MeanMetric):
pass
class BPD(NLL):
def compute(self) -> torch.Tensor:
"""Computes the bits per dimension.
Returns:
bpd
"""
return self.mean_value / self.weight / LOG2
class Perplexity(NLL):
def compute(self) -> torch.Tensor:
"""Computes the Perplexity.
Returns:
Perplexity
"""
return torch.exp(self.mean_value / self.weight)
# Based on MDLM repo
class Diffusion(L.LightningModule):
def __init__(self, config, latent_dim, tokenizer):
super().__init__()
self.config = config
self.latent_dim = latent_dim
self.tokenizer = tokenizer
self.backbone = dit.DIT(self.config, vocab_size=self.latent_dim)
self.T = self.config.T
self.subs_masking = self.config.SUBS_MASKING
self.antithetic_sampling = self.config.Training.ANTITHETIC_SAMPLING
self.mask_index = self.tokenizer.mask_token_id
self.softplus = torch.nn.Softplus()
metrics = torchmetrics.MetricCollection({
'nll': NLL(),
'bpd': BPD(),
'ppl': Perplexity(),
})
metrics.set_dtype(torch.float64)
self.train_metrics = metrics.clone(prefix='train/')
self.valid_metrics = metrics.clone(prefix='val/')
self.test_metrics = metrics.clone(prefix='test/')
self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype)
self.lr = self.config.Optim.LR
self.sampling_eps = self.config.Training.SAMPLING_EPS
self.time_conditioning = self.config.TIME_CONDITIONING
self.neg_infinity = -1000000.0
############ FORWARD DIFFUSION #########
def subs_parameterization(self, logits, noised_latents):
# log prob at the mask index = - infinity
logits[:, :, self.mask_index] += self.neg_infinity
# Normalize the logits such that x.exp() is
# a probability distribution over vocab_size.
logits = logits - torch.logsumexp(logits, dim=-1,
keepdim=True)
# Apply updates directly in the logits matrix.
# For the logits of the unmasked tokens, set all values
# to -infinity except for the indices corresponding to
# the unmasked tokens.
unmasked_indices = (noised_latents != self.mask_index)
logits[unmasked_indices] = self.neg_infinity
logits[unmasked_indices, noised_latents[unmasked_indices]] = 0
return logits
def forward(self, latents, sigma):
latents = latents.long()
with torch.cuda.amp.autocast(dtype=torch.float32):
logits = self.backbone(latents, sigma)
print(logits)
optimized_logits = self.subs_parameterization(logits, latents)
return optimized_logits
def q_xt(self, latents, move_chance):
"""
Computes the noisy sample xt.
Args:
x: int torch.Tensor with shape (batch_size, diffusion_model_input_length), input.
move_chance: float torch.Tensor with shape (batch_size, 1).
"""
latents = latents.mean(dim=1) # [bsz x seq_len x 1280] --> [bsz x 1280] as per args
move_indices = torch.rand(* latents.shape, device=latents.device) < move_chance
noised_latents = torch.where(move_indices, self.mask_index, latents)
return noised_latents
def sample_timestep(self, n, device):
_eps_t = torch.rand(n, device=device)
if self.antithetic_sampling:
offset = torch.arange(n, device=device) / n
_eps_t = (_eps_t / n + offset) % 1
t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
# if self.importance_sampling:
# return self.noise.importance_sampling_transformation(t)
return t
def d3pm_loss(self, model_output, xt, x0, t):
"""Computes the D3PM loss between noisy latents and the original input at a given time step."""
dt = 1 / self.T
if torch.is_tensor(t):
t = t[:, None]
assert t.ndim == 2
t = t.clamp(0., 1. - 1e-4)
alpha_t = 1 - t + torch.zeros_like(xt)
alpha_s = 1 - (t - dt) + torch.zeros_like(xt)
x0 = x0.to(torch.int64)
log_x_theta_at_x0 = torch.gather(model_output, -1, x0[:, :, None]).squeeze(-1)
log_x_theta_at_m = model_output[:, :, self.mask_index]
x_theta_at_m = log_x_theta_at_m.exp()
term_1_coef = dt / t
term_1_log_nr = torch.log(alpha_t * x_theta_at_m / t + 1)
term_1_log_dr = log_x_theta_at_x0
term_2_coef = 1 - dt / t
term_2_log_nr = term_1_log_nr
term_2_log_dr = torch.log(alpha_s * x_theta_at_m / (t - dt) + 1)
L_vb_masked = (
term_1_coef * (term_1_log_nr - term_1_log_dr)
+ term_2_coef * (term_2_log_nr - term_2_log_dr))
L_vb = L_vb_masked * (xt == self.mask_index)
return self.T * L_vb
def forward_diffusion(self, latents):
"""Forward diffusion process, adds noise to the latents."""
t = self.sample_timestep(latents.shape[0], latents.device)
if self.T > 0:
t = (t * self.T).to(torch.int)
t = t / self.T
# t \in {1/T, 2/T, ..., 1}
t += (1 / self.T)
sigma, dsigma = self.noise(t)
unet_conditioning = sigma[:, None]
move_chance = 1 - torch.exp(-sigma[:, None])
noised_latents = self.q_xt(latents, move_chance)
model_output = self.forward(noised_latents, unet_conditioning)
if self.T > 0:
diffusion_loss = self.d3pm_loss(model_output=model_output, xt=noised_latents, x0=latents, t=t)
return diffusion_loss
# SUBS parameterization, continuous time.
else:
log_p_theta = torch.gather(input=model_output, dim=-1, index=latents[:, :, None]).squeeze(-1)
return - log_p_theta * (dsigma / torch.expm1(sigma))[:, None]
######### LOSS CALCULATIONS #########
def maybe_sub_sample(self, x0, attention_mask):
# seqlen = x0.shape[1]
# print(seqlen)
# if seqlen > self.config.model.length:
# assert seqlen == 2 * self.config.model.length
# # cropping is needed for text8-crop dataset
# # try the same starting point for now
# start = np.random.choice(self.config.model.length)
# end = start + self.config.model.length
# input_tokens = x0[:, start: end]
# output_tokens = x0[:, start + 1: end + 1]
# new_attention_mask = attention_mask[:, start: end]
# # Helps with validation PPL, since the val
# # examples will all start and end with BOS/EOS
# input_tokens[:, 0] = self.tokenizer.bos_token_id
# output_tokens[:, -1] = self.tokenizer.eos_token_id
# elif self.parameterization == 'ar':
# input_tokens = x0[:, :-1]
# output_tokens = x0[:, 1:]
# new_attention_mask = attention_mask[:, 1:]
# else:
input_tokens = x0
output_tokens = None
new_attention_mask = attention_mask
return input_tokens, output_tokens, new_attention_mask
def compute_loss(self, latents, attention_mask):
""""Average of MLM losses to stabilize training"""
(input_tokens, output_tokens, attention_mask) = self.maybe_sub_sample(latents, attention_mask)
loss = self.forward_diffusion(input_tokens)
nlls = loss * attention_mask
count = attention_mask.sum()
batch_nll = nlls.sum()
token_nll = batch_nll / count
return Loss(loss=token_nll, nlls=nlls, token_mask=attention_mask)
######### TRAINING #########
def training_step(self, batch, batch_idx):
latents, attention_mask = batch
loss = self.compute_loss(latents, attention_mask)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
return optimizer
def validation_step(self, batch):
latents, attention_mask = batch
loss = self.compute_loss(latents, attention_mask)
return loss
######### GENERATION #########
def sample_prior(self, *batch_dims):
return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)
def sample_categorical(categorical_probs):
gumbel_norm = (1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
return (categorical_probs / gumbel_norm).argmax(dim=-1)
def ddpm_caching_update(self, x, t, dt, p_x0=None):
assert self.config.noise.type == 'loglinear'
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
move_chance_t = t[:, None, None]
move_chance_s = (t - dt)[:, None, None]
assert move_chance_t.ndim == 3, move_chance_t.shape
if p_x0 is None:
p_x0 = self.forward(x, sigma_t).exp()
assert move_chance_t.ndim == p_x0.ndim
q_xs = p_x0 * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
_x = self.sample_categorical(q_xs)
copy_flag = (x != self.mask_index).to(x.dtype)
return p_x0, copy_flag * x + (1 - copy_flag) * _x
@torch.no_grad()
def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001):
ones = torch.ones(n_samples, dtype=self.dtype,device=self.device)
num_steps = int(1 / dt)
sampling_steps = 0
intermediate_tokens = []
target = None
for _ in range(num_strides + 1):
p_x0_cache = None
x = self._sample_prior(n_samples,self.config.model.length).to(self.device)
if target is not None:
x[:, : -stride_length] = target
for i in range(num_steps + 1):
p_x0_cache, x_next = self.ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache)
if (not torch.allclose(x_next, x) or self.time_conditioning):
p_x0_cache = None
sampling_steps += 1
x = x_next
x = self.forward(x, 0 * ones).argmax(dim=-1)
intermediate_tokens.append(x[:, :stride_length].cpu().numpy())
target = x[:, stride_length:]
intermediate_tokens.append(target.cpu().numpy())
intermediate_text_samples = []
sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:]
== self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1)
for i in range(2, len(intermediate_tokens) + 1):
intermediate_text_samples.append(self.tokenizer.decode(np.concatenate(intermediate_tokens[:i], axis=1)))
return (sampling_steps, intermediate_text_samples,
sequence_lengths)
def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001):
"""Generate samples from the model."""
# Lightning auto-casting is not working in this method for some reason
self.backbone.eval()
self.noise.eval()
(sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(n_samples=self.config.Loader.BATCH_SIZE,stride_length=stride_length,num_strides=num_strides,dt=dt)
self.backbone.train()
self.noise.train()
return sampling_steps, samples, sequence_lengths