File size: 11,971 Bytes
ed920f9
 
 
9875b25
ed920f9
 
 
9875b25
ed920f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9875b25
ed920f9
9875b25
ed920f9
 
 
9875b25
ed920f9
9875b25
ed920f9
9875b25
 
 
ed920f9
 
 
 
 
 
 
 
 
 
 
 
 
9875b25
 
 
ed920f9
 
9875b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed920f9
9875b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed920f9
 
9875b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed920f9
9875b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed920f9
9875b25
 
ed920f9
 
 
 
 
9875b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import itertools
import math
import torch
import numpy as np
import pytorch_lightning as L
import torchmetrics
from dataclasses import dataclass
import dit, ema
import noise_schedule  # Assuming this is part of the MDLM repository

LOG2 = math.log(2)

@dataclass
class Loss:
    loss: torch.FloatTensor
    nlls: torch.FloatTensor
    token_mask: torch.FloatTensor

class NLL(torchmetrics.MeanMetric):
    pass

class BPD(NLL):
    def compute(self) -> torch.Tensor:
        """Computes the bits per dimension.
        Returns:
          bpd
        """
        return self.mean_value / self.weight / LOG2

class Perplexity(NLL):
    def compute(self) -> torch.Tensor:
        """Computes the Perplexity.
        Returns:
         Perplexity
        """
        return torch.exp(self.mean_value / self.weight)

# Based on MDLM repo
class Diffusion(L.LightningModule):
    def __init__(self, config, latent_dim, tokenizer):
        super().__init__()
        self.config = config
        self.latent_dim = latent_dim
        self.tokenizer = tokenizer

        self.backbone = dit.DIT(self.config, vocab_size=self.latent_dim)
        self.T = self.config.T
        self.subs_masking = self.config.SUBS_MASKING
        self.antithetic_sampling = self.config.Training.ANTITHETIC_SAMPLING
        self.mask_index = self.tokenizer.mask_token_id

        self.softplus = torch.nn.Softplus()
        metrics = torchmetrics.MetricCollection({
            'nll': NLL(),
            'bpd': BPD(),
            'ppl': Perplexity(),
        })
        metrics.set_dtype(torch.float64)
        self.train_metrics = metrics.clone(prefix='train/')
        self.valid_metrics = metrics.clone(prefix='val/')
        self.test_metrics = metrics.clone(prefix='test/')

        self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype)
        self.lr = self.config.Optim.LR
        self.sampling_eps = self.config.Training.SAMPLING_EPS
        self.time_conditioning = self.config.TIME_CONDITIONING
        self.neg_infinity = -1000000.0


    ############ FORWARD DIFFUSION #########
    def subs_parameterization(self, logits, noised_latents):
        # log prob at the mask index = - infinity
        logits[:, :, self.mask_index] += self.neg_infinity
        
        # Normalize the logits such that x.exp() is
        # a probability distribution over vocab_size.
        logits = logits - torch.logsumexp(logits, dim=-1,
                                        keepdim=True)

        # Apply updates directly in the logits matrix.
        # For the logits of the unmasked tokens, set all values
        # to -infinity except for the indices corresponding to
        # the unmasked tokens.
        unmasked_indices = (noised_latents != self.mask_index)
        logits[unmasked_indices] = self.neg_infinity
        logits[unmasked_indices, noised_latents[unmasked_indices]] = 0
        return logits

    def forward(self, latents, sigma):
        latents = latents.long()
        with torch.cuda.amp.autocast(dtype=torch.float32):
            logits = self.backbone(latents, sigma)
        print(logits)
        optimized_logits = self.subs_parameterization(logits, latents)
        return optimized_logits
    
    def q_xt(self, latents, move_chance):
        """
        Computes the noisy sample xt.
        Args:
            x: int torch.Tensor with shape (batch_size, diffusion_model_input_length), input. 
            move_chance: float torch.Tensor with shape (batch_size, 1).
        """
        latents = latents.mean(dim=1) # [bsz x seq_len x 1280] --> [bsz x 1280] as per args
        move_indices = torch.rand(* latents.shape, device=latents.device) < move_chance
        noised_latents = torch.where(move_indices, self.mask_index, latents)
        return noised_latents

    def sample_timestep(self, n, device):
        _eps_t = torch.rand(n, device=device)
        if self.antithetic_sampling:
            offset = torch.arange(n, device=device) / n
            _eps_t = (_eps_t / n + offset) % 1
        t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
        # if self.importance_sampling:
        #     return self.noise.importance_sampling_transformation(t)
        return t


    def d3pm_loss(self, model_output, xt, x0, t):
        """Computes the D3PM loss between noisy latents and the original input at a given time step."""
        dt = 1 / self.T

        if torch.is_tensor(t):
            t = t[:, None]
            assert t.ndim == 2
            t = t.clamp(0., 1. - 1e-4)
        alpha_t = 1 - t + torch.zeros_like(xt)
        alpha_s = 1 - (t - dt) + torch.zeros_like(xt)

        x0 = x0.to(torch.int64)
        log_x_theta_at_x0 = torch.gather(model_output, -1, x0[:, :, None]).squeeze(-1)
        log_x_theta_at_m = model_output[:, :, self.mask_index]
        x_theta_at_m = log_x_theta_at_m.exp()
        
        term_1_coef = dt / t
        term_1_log_nr = torch.log(alpha_t * x_theta_at_m / t + 1)
        term_1_log_dr = log_x_theta_at_x0
        
        term_2_coef = 1 - dt / t
        term_2_log_nr = term_1_log_nr
        term_2_log_dr = torch.log(alpha_s * x_theta_at_m / (t - dt) + 1)

        L_vb_masked = (
            term_1_coef * (term_1_log_nr - term_1_log_dr)
            + term_2_coef * (term_2_log_nr - term_2_log_dr))

        L_vb = L_vb_masked * (xt == self.mask_index)

        return self.T * L_vb

    def forward_diffusion(self, latents):
        """Forward diffusion process, adds noise to the latents."""

        t = self.sample_timestep(latents.shape[0], latents.device)
        if self.T > 0:
            t = (t * self.T).to(torch.int)
            t = t / self.T
            # t \in {1/T, 2/T, ..., 1}
            t += (1 / self.T)

        sigma, dsigma = self.noise(t)
        unet_conditioning = sigma[:, None]
        move_chance = 1 - torch.exp(-sigma[:, None])
        
        noised_latents = self.q_xt(latents, move_chance)
        model_output = self.forward(noised_latents, unet_conditioning)
    
        if self.T > 0:
            diffusion_loss = self.d3pm_loss(model_output=model_output, xt=noised_latents, x0=latents, t=t)
            return diffusion_loss
        # SUBS parameterization, continuous time.
        else:
            log_p_theta = torch.gather(input=model_output, dim=-1, index=latents[:, :, None]).squeeze(-1)
            return - log_p_theta * (dsigma / torch.expm1(sigma))[:, None]
    

    ######### LOSS CALCULATIONS #########
    def maybe_sub_sample(self, x0, attention_mask):
        # seqlen = x0.shape[1]
        # print(seqlen)
        # if seqlen > self.config.model.length:
        #     assert seqlen == 2 * self.config.model.length
        #     # cropping is needed for text8-crop dataset
        #     # try the same starting point for now
        #     start = np.random.choice(self.config.model.length)
        #     end = start + self.config.model.length
        #     input_tokens = x0[:, start: end]
        #     output_tokens = x0[:, start + 1: end + 1]
        #     new_attention_mask = attention_mask[:, start: end]

        #     # Helps with validation PPL, since the val
        #     # examples will all start and end with BOS/EOS
        #     input_tokens[:, 0] = self.tokenizer.bos_token_id
        #     output_tokens[:, -1] = self.tokenizer.eos_token_id
    
        # elif self.parameterization == 'ar':
        #     input_tokens = x0[:, :-1]
        #     output_tokens = x0[:, 1:]
        #     new_attention_mask = attention_mask[:, 1:]
        # else:
        input_tokens = x0
        output_tokens = None
        new_attention_mask = attention_mask
    
        return input_tokens, output_tokens, new_attention_mask

    def compute_loss(self, latents, attention_mask):
        """"Average of MLM losses to stabilize training"""
        (input_tokens, output_tokens, attention_mask) = self.maybe_sub_sample(latents, attention_mask)
        loss = self.forward_diffusion(input_tokens)

        nlls = loss * attention_mask
        count = attention_mask.sum()
        batch_nll = nlls.sum()
        token_nll = batch_nll / count

        return Loss(loss=token_nll, nlls=nlls, token_mask=attention_mask)


    ######### TRAINING #########
    def training_step(self, batch, batch_idx):
        latents, attention_mask = batch
        loss = self.compute_loss(latents, attention_mask)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer

    def validation_step(self, batch):
        latents, attention_mask = batch
        loss = self.compute_loss(latents, attention_mask)
        return loss
    

    ######### GENERATION #########
    def sample_prior(self, *batch_dims):
        return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)

    def sample_categorical(categorical_probs):
        gumbel_norm = (1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
        return (categorical_probs / gumbel_norm).argmax(dim=-1)

    def ddpm_caching_update(self, x, t, dt, p_x0=None):
        assert self.config.noise.type == 'loglinear'
        sigma_t, _ = self.noise(t)
        if t.ndim > 1:
            t = t.squeeze(-1)
        assert t.ndim == 1
        move_chance_t = t[:, None, None]
        move_chance_s = (t - dt)[:, None, None]
        assert move_chance_t.ndim == 3, move_chance_t.shape
        if p_x0 is None:
            p_x0 = self.forward(x, sigma_t).exp()
    
        assert move_chance_t.ndim == p_x0.ndim
        q_xs = p_x0 * (move_chance_t - move_chance_s)
        q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
        _x = self.sample_categorical(q_xs)
        
        copy_flag = (x != self.mask_index).to(x.dtype)
        return p_x0, copy_flag * x + (1 - copy_flag) * _x


    @torch.no_grad()
    def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001):
        ones = torch.ones(n_samples, dtype=self.dtype,device=self.device)
        num_steps = int(1 / dt)
        sampling_steps = 0
        intermediate_tokens = []
        target = None

        for _ in range(num_strides + 1):
            p_x0_cache = None
            x = self._sample_prior(n_samples,self.config.model.length).to(self.device)
            
            if target is not None:
                x[:, : -stride_length] = target
            
            for i in range(num_steps + 1):
                p_x0_cache, x_next = self.ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache)
                if (not torch.allclose(x_next, x) or self.time_conditioning):
                    p_x0_cache = None
                    sampling_steps += 1
                x = x_next
            x = self.forward(x, 0 * ones).argmax(dim=-1)
            intermediate_tokens.append(x[:, :stride_length].cpu().numpy())
            target = x[:, stride_length:]
    
        intermediate_tokens.append(target.cpu().numpy())
        intermediate_text_samples = []
        sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:]
                                 == self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1)
    
        for i in range(2, len(intermediate_tokens) + 1):
            intermediate_text_samples.append(self.tokenizer.decode(np.concatenate(intermediate_tokens[:i], axis=1)))
        
        return (sampling_steps, intermediate_text_samples,
            sequence_lengths)

    def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001):
        """Generate samples from the model."""
        # Lightning auto-casting is not working in this method for some reason
        self.backbone.eval()
        self.noise.eval()
    
        (sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(n_samples=self.config.Loader.BATCH_SIZE,stride_length=stride_length,num_strides=num_strides,dt=dt)

        self.backbone.train()
        self.noise.train()
        return sampling_steps, samples, sequence_lengths