|
import pandas as pd |
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
from torch.nn.utils.rnn import pad_sequence |
|
from esm_utils import get_latents, load_esm2_model |
|
import config |
|
|
|
class ProteinDataset(Dataset): |
|
def __init__(self, csv_file, tokenizer, model): |
|
self.data = pd.read_csv(csv_file).head(4) |
|
self.tokenizer = tokenizer |
|
self.model = model |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
sequence = self.data.iloc[idx]['Sequence'] |
|
latents = get_latents(self.model, self.tokenizer, sequence) |
|
|
|
attention_mask = torch.ones_like(latents) |
|
attention_mask = torch.mean(attention_mask, dim=-1) |
|
|
|
return latents, attention_mask |
|
|
|
def collate_fn(batch): |
|
latents, attention_mask = zip(*batch) |
|
latents_padded = pad_sequence([torch.tensor(latent) for latent in latents], batch_first=True, padding_value=0) |
|
attention_mask_padded = pad_sequence([torch.tensor(mask) for mask in attention_mask], batch_first=True, padding_value=0) |
|
return latents_padded, attention_mask_padded |
|
|
|
def get_dataloaders(config): |
|
tokenizer, masked_model, embedding_model = load_esm2_model(config.MODEL_NAME) |
|
|
|
train_dataset = ProteinDataset(config.Loader.DATA_PATH + "/train.csv", tokenizer, embedding_model) |
|
val_dataset = ProteinDataset(config.Loader.DATA_PATH + "/val.csv", tokenizer, embedding_model) |
|
test_dataset = ProteinDataset(config.Loader.DATA_PATH + "/test.csv", tokenizer, embedding_model) |
|
|
|
train_loader = DataLoader(train_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=True, collate_fn=collate_fn) |
|
val_loader = DataLoader(val_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=False, collate_fn=collate_fn) |
|
test_loader = DataLoader(test_dataset, batch_size=config.Loader.BATCH_SIZE, num_workers=0, shuffle=False, collate_fn=collate_fn) |
|
|
|
return train_loader, val_loader, test_loader |