|
import itertools |
|
import math |
|
import torch |
|
import numpy as np |
|
import pytorch_lightning as L |
|
import torchmetrics |
|
from dataclasses import dataclass |
|
import dit, ema |
|
import noise_schedule |
|
|
|
LOG2 = math.log(2) |
|
|
|
@dataclass |
|
class Loss: |
|
loss: torch.FloatTensor |
|
nlls: torch.FloatTensor |
|
token_mask: torch.FloatTensor |
|
|
|
class NLL(torchmetrics.MeanMetric): |
|
pass |
|
|
|
class BPD(NLL): |
|
def compute(self) -> torch.Tensor: |
|
"""Computes the bits per dimension. |
|
Returns: |
|
bpd |
|
""" |
|
return self.mean_value / self.weight / LOG2 |
|
|
|
class Perplexity(NLL): |
|
def compute(self) -> torch.Tensor: |
|
"""Computes the Perplexity. |
|
Returns: |
|
Perplexity |
|
""" |
|
return torch.exp(self.mean_value / self.weight) |
|
|
|
|
|
class Diffusion(L.LightningModule): |
|
def __init__(self, config, latent_dim, tokenizer): |
|
super().__init__() |
|
self.config = config |
|
self.latent_dim = latent_dim |
|
self.tokenizer = tokenizer |
|
|
|
self.backbone = dit.DIT(self.config, vocab_size=self.latent_dim) |
|
self.T = self.config.T |
|
self.subs_masking = self.config.SUBS_MASKING |
|
self.antithetic_sampling = self.config.Training.ANTITHETIC_SAMPLING |
|
self.mask_index = self.tokenizer.mask_token_id |
|
|
|
self.softplus = torch.nn.Softplus() |
|
metrics = torchmetrics.MetricCollection({ |
|
'nll': NLL(), |
|
'bpd': BPD(), |
|
'ppl': Perplexity(), |
|
}) |
|
metrics.set_dtype(torch.float64) |
|
self.train_metrics = metrics.clone(prefix='train/') |
|
self.valid_metrics = metrics.clone(prefix='val/') |
|
self.test_metrics = metrics.clone(prefix='test/') |
|
|
|
self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype) |
|
self.lr = self.config.Optim.LR |
|
self.sampling_eps = self.config.Training.SAMPLING_EPS |
|
self.time_conditioning = self.config.TIME_CONDITIONING |
|
self.neg_infinity = -1000000.0 |
|
|
|
|
|
|
|
def subs_parameterization(self, logits, noised_latents): |
|
|
|
logits[:, :, self.mask_index] += self.neg_infinity |
|
|
|
|
|
|
|
logits = logits - torch.logsumexp(logits, dim=-1, |
|
keepdim=True) |
|
|
|
|
|
|
|
|
|
|
|
unmasked_indices = (noised_latents != self.mask_index) |
|
logits[unmasked_indices] = self.neg_infinity |
|
logits[unmasked_indices, noised_latents[unmasked_indices]] = 0 |
|
return logits |
|
|
|
def forward(self, latents, sigma): |
|
latents = latents.long() |
|
with torch.cuda.amp.autocast(dtype=torch.float32): |
|
logits = self.backbone(latents, sigma) |
|
print(logits) |
|
optimized_logits = self.subs_parameterization(logits, latents) |
|
return optimized_logits |
|
|
|
def q_xt(self, latents, move_chance): |
|
""" |
|
Computes the noisy sample xt. |
|
Args: |
|
x: int torch.Tensor with shape (batch_size, diffusion_model_input_length), input. |
|
move_chance: float torch.Tensor with shape (batch_size, 1). |
|
""" |
|
latents = latents.mean(dim=1) |
|
move_indices = torch.rand(* latents.shape, device=latents.device) < move_chance |
|
noised_latents = torch.where(move_indices, self.mask_index, latents) |
|
return noised_latents |
|
|
|
def sample_timestep(self, n, device): |
|
_eps_t = torch.rand(n, device=device) |
|
if self.antithetic_sampling: |
|
offset = torch.arange(n, device=device) / n |
|
_eps_t = (_eps_t / n + offset) % 1 |
|
t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps |
|
|
|
|
|
return t |
|
|
|
|
|
def d3pm_loss(self, model_output, xt, x0, t): |
|
"""Computes the D3PM loss between noisy latents and the original input at a given time step.""" |
|
dt = 1 / self.T |
|
|
|
if torch.is_tensor(t): |
|
t = t[:, None] |
|
assert t.ndim == 2 |
|
t = t.clamp(0., 1. - 1e-4) |
|
alpha_t = 1 - t + torch.zeros_like(xt) |
|
alpha_s = 1 - (t - dt) + torch.zeros_like(xt) |
|
|
|
x0 = x0.to(torch.int64) |
|
log_x_theta_at_x0 = torch.gather(model_output, -1, x0[:, :, None]).squeeze(-1) |
|
log_x_theta_at_m = model_output[:, :, self.mask_index] |
|
x_theta_at_m = log_x_theta_at_m.exp() |
|
|
|
term_1_coef = dt / t |
|
term_1_log_nr = torch.log(alpha_t * x_theta_at_m / t + 1) |
|
term_1_log_dr = log_x_theta_at_x0 |
|
|
|
term_2_coef = 1 - dt / t |
|
term_2_log_nr = term_1_log_nr |
|
term_2_log_dr = torch.log(alpha_s * x_theta_at_m / (t - dt) + 1) |
|
|
|
L_vb_masked = ( |
|
term_1_coef * (term_1_log_nr - term_1_log_dr) |
|
+ term_2_coef * (term_2_log_nr - term_2_log_dr)) |
|
|
|
L_vb = L_vb_masked * (xt == self.mask_index) |
|
|
|
return self.T * L_vb |
|
|
|
def forward_diffusion(self, latents): |
|
"""Forward diffusion process, adds noise to the latents.""" |
|
|
|
t = self.sample_timestep(latents.shape[0], latents.device) |
|
if self.T > 0: |
|
t = (t * self.T).to(torch.int) |
|
t = t / self.T |
|
|
|
t += (1 / self.T) |
|
|
|
sigma, dsigma = self.noise(t) |
|
unet_conditioning = sigma[:, None] |
|
move_chance = 1 - torch.exp(-sigma[:, None]) |
|
|
|
noised_latents = self.q_xt(latents, move_chance) |
|
model_output = self.forward(noised_latents, unet_conditioning) |
|
|
|
if self.T > 0: |
|
diffusion_loss = self.d3pm_loss(model_output=model_output, xt=noised_latents, x0=latents, t=t) |
|
return diffusion_loss |
|
|
|
else: |
|
log_p_theta = torch.gather(input=model_output, dim=-1, index=latents[:, :, None]).squeeze(-1) |
|
return - log_p_theta * (dsigma / torch.expm1(sigma))[:, None] |
|
|
|
|
|
|
|
def maybe_sub_sample(self, x0, attention_mask): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_tokens = x0 |
|
output_tokens = None |
|
new_attention_mask = attention_mask |
|
|
|
return input_tokens, output_tokens, new_attention_mask |
|
|
|
def compute_loss(self, latents, attention_mask): |
|
""""Average of MLM losses to stabilize training""" |
|
(input_tokens, output_tokens, attention_mask) = self.maybe_sub_sample(latents, attention_mask) |
|
loss = self.forward_diffusion(input_tokens) |
|
|
|
nlls = loss * attention_mask |
|
count = attention_mask.sum() |
|
batch_nll = nlls.sum() |
|
token_nll = batch_nll / count |
|
|
|
return Loss(loss=token_nll, nlls=nlls, token_mask=attention_mask) |
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx): |
|
latents, attention_mask = batch |
|
loss = self.compute_loss(latents, attention_mask) |
|
return loss |
|
|
|
def configure_optimizers(self): |
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) |
|
return optimizer |
|
|
|
def validation_step(self, batch): |
|
latents, attention_mask = batch |
|
loss = self.compute_loss(latents, attention_mask) |
|
return loss |
|
|
|
|
|
|
|
def sample_prior(self, *batch_dims): |
|
return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64) |
|
|
|
def sample_categorical(categorical_probs): |
|
gumbel_norm = (1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log()) |
|
return (categorical_probs / gumbel_norm).argmax(dim=-1) |
|
|
|
def ddpm_caching_update(self, x, t, dt, p_x0=None): |
|
assert self.config.noise.type == 'loglinear' |
|
sigma_t, _ = self.noise(t) |
|
if t.ndim > 1: |
|
t = t.squeeze(-1) |
|
assert t.ndim == 1 |
|
move_chance_t = t[:, None, None] |
|
move_chance_s = (t - dt)[:, None, None] |
|
assert move_chance_t.ndim == 3, move_chance_t.shape |
|
if p_x0 is None: |
|
p_x0 = self.forward(x, sigma_t).exp() |
|
|
|
assert move_chance_t.ndim == p_x0.ndim |
|
q_xs = p_x0 * (move_chance_t - move_chance_s) |
|
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0] |
|
_x = self.sample_categorical(q_xs) |
|
|
|
copy_flag = (x != self.mask_index).to(x.dtype) |
|
return p_x0, copy_flag * x + (1 - copy_flag) * _x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001): |
|
ones = torch.ones(n_samples, dtype=self.dtype,device=self.device) |
|
num_steps = int(1 / dt) |
|
sampling_steps = 0 |
|
intermediate_tokens = [] |
|
target = None |
|
|
|
for _ in range(num_strides + 1): |
|
p_x0_cache = None |
|
x = self._sample_prior(n_samples,self.config.model.length).to(self.device) |
|
|
|
if target is not None: |
|
x[:, : -stride_length] = target |
|
|
|
for i in range(num_steps + 1): |
|
p_x0_cache, x_next = self.ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache) |
|
if (not torch.allclose(x_next, x) or self.time_conditioning): |
|
p_x0_cache = None |
|
sampling_steps += 1 |
|
x = x_next |
|
x = self.forward(x, 0 * ones).argmax(dim=-1) |
|
intermediate_tokens.append(x[:, :stride_length].cpu().numpy()) |
|
target = x[:, stride_length:] |
|
|
|
intermediate_tokens.append(target.cpu().numpy()) |
|
intermediate_text_samples = [] |
|
sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:] |
|
== self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1) |
|
|
|
for i in range(2, len(intermediate_tokens) + 1): |
|
intermediate_text_samples.append(self.tokenizer.decode(np.concatenate(intermediate_tokens[:i], axis=1))) |
|
|
|
return (sampling_steps, intermediate_text_samples, |
|
sequence_lengths) |
|
|
|
def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001): |
|
"""Generate samples from the model.""" |
|
|
|
self.backbone.eval() |
|
self.noise.eval() |
|
|
|
(sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(n_samples=self.config.Loader.BATCH_SIZE,stride_length=stride_length,num_strides=num_strides,dt=dt) |
|
|
|
self.backbone.train() |
|
self.noise.train() |
|
return sampling_steps, samples, sequence_lengths |