MeMDLM / scripts /train_pytorch.py
sgoel30's picture
Upload 4 files
fedcb95 verified
raw
history blame
6.84 kB
import torch
import config
import math
import sys
import os
from tqdm import tqdm
from torch.optim import AdamW
from transformers import AutoTokenizer
from diffusion import WrapESM, Diffusion
from data_loader import get_dataloaders
def save_hyperparams(ckpt_dir):
hyperparms_txt_file = os.path.join(ckpt_dir, "hyperparameters.txt")
with open(hyperparms_txt_file, 'w') as f:
for k, v in vars(config).items():
if k.isupper():
f.write(f"{k}: {v}\n")
def train_and_validate(model, optimizer, device, train_loader, val_loader, num_epochs, ckpt_dir):
best_val_loss = float('inf')
for epoch in range(num_epochs):
model.train()
print(f"EPOCH {epoch+1}/{num_epochs}")
sys.stderr.flush()
total_loss = 0.0
train_tokens = 0
weighted_total_train_loss = 0.0
train_update_interval = len(train_loader) // 4
with tqdm(enumerate(train_loader), desc="Training batch", total=len(train_loader), leave=True, position=0, ncols=100) as trainbar:
for step, inputs in trainbar:
inputs = {k: v.to(device) for k, v in inputs.items()}
optimizer.zero_grad()
outputs = model(**inputs)
train_loss = diffusion_model.compute_loss(inputs["input_ids"], inputs['attention_mask'],
val=False).loss
train_loss.backward()
optimizer.step()
total_loss += train_loss.item()
weighted_total_train_loss += train_loss.item() * inputs['input_ids'].shape[1] # Loss * sequence length
train_tokens += inputs['input_ids'].shape[1]
if (step+1) % train_update_interval == 0:
trainbar.update(train_update_interval)
avg_train_loss = total_loss / len(train_loader)
avg_train_neg_log_likelihood = weighted_total_train_loss / train_tokens
train_perplexity = math.exp(avg_train_neg_log_likelihood)
# Save model every epoch
train_ckpt_path = os.path.join(config.Eval.CHECKPOINT_PATH, f'epoch{epoch+1}')
model.save_model(train_ckpt_path)
save_hyperparams(train_ckpt_path)
# Validate model
if val_loader:
model.eval()
total_val_loss = 0.0
weighted_total_val_loss = 0.0
val_tokens = 0
with torch.no_grad():
val_update_interval = len(val_loader) // 4
with tqdm(enumerate(val_loader), desc='Validiation batch', total=len(val_loader), leave=True, position=0) as valbar:
for step, inputs in valbar:
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model(**inputs)
val_loss = diffusion_model.compute_loss(inputs['input_ids'], inputs['attention_mask'],
val=True).loss.item()
total_val_loss += val_loss
weighted_total_val_loss += val_loss * inputs['input_ids'].shape[1] # Loss * sequence length
val_tokens += inputs['input_ids'].shape[1]
if (step+1) % val_update_interval == 0:
valbar.update(val_update_interval)
avg_val_loss = total_val_loss / len(val_loader)
avg_val_log_likelihood = weighted_total_val_loss / val_tokens
val_perplexity = math.exp(avg_val_log_likelihood)
# Save the best model based on validation loss
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
val_ckpt_path = os.path.join(config.Eval.CHECKPOINT_PATH, "best_model_epoch")
model.save_model(val_ckpt_path)
save_hyperparams(val_ckpt_path)
print(f"Average train loss: {avg_train_loss}")
print(f"Average train perplexity: {train_perplexity}\n")
sys.stdout.flush()
print(f"Average validation loss: {avg_val_loss}")
print(f"Average validation perplexity: {val_perplexity}\n")
sys.stdout.flush()
return avg_train_loss, train_perplexity, avg_val_loss, val_perplexity
def test(model, test_loader, device):
model.to(device).eval()
total_test_loss = 0.0
weighted_total_test_loss = 0.0
test_tokens = 0
with torch.no_grad():
for step, inputs in enumerate(test_loader):
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model(**inputs)
test_loss = diffusion_model.compute_loss(inputs['input_ids'], inputs['attention_mask'],
val=True).loss.item()
total_test_loss += test_loss
weighted_total_test_loss += test_loss * inputs['input_ids'].shape[1] # loss * sequence length
test_tokens += inputs['input_ids'].shape[1]
avg_test_loss = total_test_loss / len(test_loader)
avg_test_log_likelihood = weighted_total_test_loss / test_tokens
test_perplexity = math.exp(avg_test_log_likelihood)
return avg_test_loss, test_perplexity
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(config.MODEL_NAME)
esm_model = WrapESM()
diffusion_model = Diffusion(config, tokenizer=tokenizer)
print(f'Trainable params before unfreezing: {sum(p.numel() for p in esm_model.parameters() if p.requires_grad)}')
esm_model.to(device)
diffusion_model.to(device)
esm_model.freeze_model()
esm_model.unfreeze_n_layers()
print(f'Trainable params after unfreezing: {sum(p.numel() for p in esm_model.parameters() if p.requires_grad)}')
train_loader, val_loader, test_loader = get_dataloaders(config)
optimizer = AdamW(filter(lambda p: p.requires_grad, esm_model.parameters()), lr=config.Optim.LR)
# Train and test the model
avg_train_loss, train_ppl, avg_val_loss, val_ppl = train_and_validate(esm_model, optimizer, device, train_loader, val_loader, config.Training.NUM_EPOCHS, config.Eval.CHECKPOINT_PATH)
avg_test_loss, test_ppl = test(esm_model, test_loader, device)
results_dict = {"Average train loss": avg_train_loss,
"Average train perplexity": train_ppl,
"Average val loss": avg_val_loss,
"Average val perplexity": val_ppl,
"Average test loss": avg_test_loss,
"Average test perplexity": test_ppl,
}
print("TRAIN AND TEST RESULTS")
for k, v in results_dict.items():
print(f"{k}: {v}\n")