File size: 26,358 Bytes
d061944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
import functools
import itertools
import json
import math
import os
import re
import shutil
import typing
import urllib
import zipfile
import datasets
import fsspec
import requests
import tokenizers
import torch
import transformers
import utils
LOGGER = utils.get_logger(__name__)
def wt_detokenizer(string):
# contractions
string = string.replace("s '", "s'")
string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
# number separators
string = string.replace(" @-@ ", "-")
string = string.replace(" @,@ ", ",")
string = string.replace(" @.@ ", ".")
# punctuation
string = string.replace(" : ", ": ")
string = string.replace(" ; ", "; ")
string = string.replace(" . ", ". ")
string = string.replace(" ! ", "! ")
string = string.replace(" ? ", "? ")
string = string.replace(" , ", ", ")
# double brackets
string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
# miscellaneous
string = string.replace("= = = =", "====")
string = string.replace("= = =", "===")
string = string.replace("= =", "==")
string = string.replace(" " + chr(176) + " ", chr(176))
string = string.replace(" \n", "\n")
string = string.replace("\n ", "\n")
string = string.replace(" N ", " 1 ")
string = string.replace(" 's", "'s")
return string
def ptb_detokenizer(x):
x = x.replace(" 's", "'s")
x = x.replace("s ' ", "s' ")
x = x.replace(" n't", "n't")
x = x.replace(" \n ", "\n")
x = x.replace("\\/", "/")
for _ in range(10):
x = x.replace(" N ", " 1 ")
x = x.replace("$ 1", "$1")
x = x.replace("# 1", "#1")
x = x.replace("<unk>", "?")
return x
def lm1b_detokenizer(x):
x = x.replace('http : / / ', 'http://')
x = x.replace('https : / / ', 'https://')
x = re.sub(r' \'(\w+)', r"'\1", x)
x = re.sub(r' (\w+) \. ', r' \1. ', x)
x = re.sub(r' (\w+) \.$', r' \1.', x)
x = x.replace(' ? ', '? ')
x = re.sub(r' \?$', '?', x)
x = x.replace(' ! ', '! ')
x = re.sub(r' \!$', '!', x)
x = x.replace(' , ', ', ')
x = x.replace(' : ', ': ')
x = x.replace(' ; ', '; ')
x = x.replace(' / ', '/')
x = re.sub(r'\" ([^\"]+) \"', r'"\1"', x)
x = re.sub(r'\' ([^\']+) \'', r"'\1'", x)
x = re.sub(r'\( ([^\(\)]+) \)', r"(\1)", x)
x = re.sub(r'\[ ([^\[\]]+) \]', r"[\1]", x)
x = x.replace('$ ', '$')
x = x.replace('£ ', '£')
return x
def lambada_detokenizer(text):
text = text.replace("“", '"')
text = text.replace("”", '"')
return '\n'+text.strip()
def scientific_papers_detokenizer(x):
x = wt_detokenizer(x)
x = lm1b_detokenizer(x)
return x
class Text8Tokenizer(transformers.PreTrainedTokenizer):
def __init__(
self,
bos_token='[BOS]',
eos_token='[EOS]',
sep_token='[SEP]',
cls_token='[CLS]',
pad_token='[PAD]',
mask_token='[MASK]',
unk_token='[UNK]',
**kwargs):
self.characters = list('abcdefghijklmnopqrstuvwxyz ')
self._vocab_str_to_int = {
'[CLS]': 0,
'[SEP]': 1,
'[BOS]': 2,
'[EOS]': 3,
'[MASK]': 4,
'[PAD]': 5,
'[RESERVED]': 6,
'[UNK]': 7,
** {ch: i + 8 for i, ch in enumerate(self.characters)}}
self._vocab_int_to_str = {
v: k for k, v in self._vocab_str_to_int.items()}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
unk_token=unk_token,
**kwargs)
@property
def vocab_size(self) -> int:
return len(self._vocab_str_to_int)
def _tokenize(self, text: str, **kwargs) -> typing.List[str]:
return list(text.lower())
def _convert_token_to_id(self, token: str) -> int:
return self._vocab_str_to_int.get(
token, self._vocab_str_to_int['[UNK]'])
def _convert_id_to_token(self, index: int) -> str:
return self._vocab_int_to_str[index]
def convert_tokens_to_string(self, tokens):
return ''.join(tokens)
def get_vocab(self) -> typing.Dict[str, int]:
return self._vocab_str_to_int
def get_lambada_test_dataset():
url = "https://openaipublic.blob.core.windows.net/gpt-2/data/lambada_test.jsonl"
def read_jsonl_to_list(url):
response = requests.get(url, stream=True)
data_list = []
# Process each line in the response content
for line in response.iter_lines(decode_unicode=True):
if line:
data = json.loads(line)
data_list.append(data)
return data_list
lambada_data = read_jsonl_to_list(url)
dataset = datasets.Dataset.from_list(lambada_data)
return dataset
def get_text8_dataset(cache_dir, max_seq_length=256,
drop_last=True, crop_train=False):
"""Adapted from:
https://github.com/google-research/google-research/blob/master/d3pm/text/datasets.py#L344
Args:
cache_dir: str, path to cache directory.
max_seq_length: int, maximum length of sequences.
(default: 256, as in D3PM codebase.)
drop_last: bool, whether to drop the last incomplete
batch. (default: True, as in D3PM codebase.)
crop_train: bool, whether to subsample contiguous
subsequences from training example. serves to
make sure transformer models with absolute position
embeddings do not have incorrect position-wise
marginals. (default: False, but necessary to match D3PM AR)
Returns:
dataset: dataset.DatasetDict, with keys 'train',
'valid', 'test'.
"""
url = 'http://mattmahoney.net/dc/text8.zip'
if not crop_train:
cache_dir = f'{cache_dir}/text8'
else:
cache_dir = f'{cache_dir}/text8-crop-train'
split_names = ['train', 'validation', 'test']
if not all([
utils.fsspec_exists(os.path.join(cache_dir, split))
for split in split_names
]):
# Check if raw data exists
raw_cache_dir = os.path.join(cache_dir, 'raw_data')
if not all([
utils.fsspec_exists(
os.path.join(raw_cache_dir, f'text8.{split}.txt'))
for split in split_names
]):
if not utils.fsspec_exists(
os.path.join(raw_cache_dir, 'text8.zip')):
utils.fsspec_mkdirs(raw_cache_dir, exist_ok=True)
LOGGER.info('Downloading text8 from URL {}.'.format(url))
with urllib.request.urlopen(url) as in_stream:
with open(os.path.join(raw_cache_dir, 'text8.zip'), 'wb') as out_file:
shutil.copyfileobj(in_stream, out_file)
with fsspec.open(
os.path.join(raw_cache_dir, 'text8.zip'),
'rb') as f:
rawdata = zipfile.ZipFile(f).read(
'text8').decode('utf-8')
# Splits taken from D3PM codebase
splits = {
'train': rawdata[:90000000],
'validation': rawdata[90000000: 95000000],
'test': rawdata[95000000:],
}
for split, data in splits.items():
_path = os.path.join(raw_cache_dir,
f'text8.{split}.txt')
with fsspec.open(_path, 'w') as f:
f.write(data)
else:
splits = {}
for split in split_names:
_path = os.path.join(raw_cache_dir,
f'text8.{split}.txt')
with fsspec.open(_path, 'r') as f:
splits[split] = f.read()
# Chunk and save as datasets.DatasetDict
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
dataset_dict = {}
for k, v in splits.items():
if k == 'train' and crop_train == True:
chunk_size = 2 * max_seq_length
else:
chunk_size = max_seq_length
text = list(chunks(v, chunk_size))
if drop_last and len(text[-1]) < chunk_size:
text = text[:-1]
dataset_dict[k] = datasets.Dataset.from_dict({'text': text})
dataset = datasets.DatasetDict(dataset_dict)
dataset.save_to_disk(cache_dir)
else:
dataset = datasets.load_from_disk(cache_dir)
return dataset
def _group_texts(examples, block_size, bos, eos):
# Concatenate all texts.
concatenated_examples = list(itertools.chain(* examples['input_ids']))
total_length = len(concatenated_examples)
# TODO(yair): look into not dropping the remainder but rather padding it.
# We drop the small remainder, and if the total_length < block_size - 2
# we exclude this batch and return an empty dict.
# We could add padding if the model supported it instead of
# this drop, you can customize this part to your needs.
new_block_size = block_size - 2 # [BOS] and [EOS] to be added
total_length = (total_length // new_block_size) * new_block_size
# Split by chunks of max_len.
result = {}
_values = []
_attn_masks = []
for i in range(0, total_length, new_block_size):
_values.append(
[bos]
+ concatenated_examples[i : i + new_block_size]
+ [eos])
_attn_masks.append(torch.ones(block_size))
result['input_ids'] = _values
result['attention_mask'] = _attn_masks
return result
def get_dataset(
dataset_name, tokenizer, wrap, mode, cache_dir,
block_size=1024, num_proc=len(os.sched_getaffinity(0)), streaming=False):
if wrap:
filename = f'{dataset_name}_{mode}_bs{block_size}_wrapped.dat'
else:
filename = f'{dataset_name}_{mode}_bs{block_size}_unwrapped.dat'
_path = os.path.join(cache_dir, filename)
if utils.fsspec_exists(_path):
LOGGER.info(f'Loading data from: {_path}')
return datasets.load_from_disk(_path).with_format('torch')
LOGGER.info(f'Generating new data at: {_path}')
crop_train = dataset_name == 'text8-crop'
if mode == 'train' and crop_train:
# double block size for sub-sampling
block_size *= 2
if dataset_name == 'wikitext103':
dataset = datasets.load_dataset(
'wikitext',
name='wikitext-103-raw-v1',
cache_dir=cache_dir)
elif dataset_name == 'wikitext2':
dataset = datasets.load_dataset(
'wikitext',
name='wikitext-2-raw-v1',
cache_dir=cache_dir)
elif dataset_name == 'ptb':
dataset = datasets.load_dataset(
'ptb_text_only', cache_dir=cache_dir)
elif dataset_name == 'lambada':
dataset = get_lambada_test_dataset()
elif dataset_name == 'text8':
assert wrap
dataset = get_text8_dataset(
cache_dir, max_seq_length=block_size)
elif dataset_name == 'text8-crop':
dataset = get_text8_dataset(
cache_dir, max_seq_length=block_size, crop_train=True)
elif dataset_name == 'openwebtext-train':
dataset = datasets.load_dataset(
'openwebtext',
split='train[:-100000]',
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'openwebtext-valid':
dataset = datasets.load_dataset(
'openwebtext',
split='train[-100000:]',
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'scientific_papers_arxiv':
dataset = datasets.load_dataset(
'scientific_papers', 'arxiv',
trust_remote_code=True,
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'scientific_papers_pubmed':
dataset = datasets.load_dataset(
'scientific_papers', 'pubmed',
trust_remote_code=True,
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'ag_news':
dataset = datasets.load_dataset(
'ag_news',
cache_dir=cache_dir,
streaming=streaming)
else:
dataset = datasets.load_dataset(
dataset_name,
cache_dir=cache_dir,
streaming=streaming)
if dataset_name in ['lambada', 'openwebtext-train',
'openwebtext-valid']:
data = dataset
else:
data = dataset[mode]
if dataset_name.startswith('wikitext'):
detokenizer = wt_detokenizer
elif dataset_name == 'ptb':
detokenizer = ptb_detokenizer
elif dataset_name == 'lm1b':
detokenizer = lm1b_detokenizer
elif dataset_name == 'lambada':
detokenizer = lambada_detokenizer
elif dataset_name.startswith('scientific_papers'):
detokenizer = scientific_papers_detokenizer
else:
detokenizer = None
def _apply_detokenizer(detokenizer):
def detok(text):
for i, t in enumerate(text, 0):
text[i] = detokenizer(t)
return text
return detok
EOS = tokenizer.encode(tokenizer.eos_token)[0]
BOS = tokenizer.encode(tokenizer.bos_token)[0]
def preprocess_and_tokenize(example):
if dataset_name == 'ptb':
text = example['sentence']
elif 'scientific_papers' in dataset_name:
text = example['article']
else:
text = example['text']
if detokenizer is not None:
text = _apply_detokenizer(detokenizer)(text)
tokenizer.padding_side = 'right'
tokenizer.truncation_side = 'right'
if wrap:
tokens = tokenizer(text,
add_special_tokens=False,
return_attention_mask=False,
return_token_type_ids=False)
tokens = {'input_ids':
[t + [EOS] for t in tokens['input_ids']]}
# Still missing BOS, but will be added in group_texts
else:
tokens = tokenizer(text,
max_length=block_size,
padding='max_length',
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_token_type_ids=True)
return tokens
if streaming:
tokenized_dataset = data.map(
preprocess_and_tokenize,
batched=True,
desc='Tokenizing')
else:
tokenized_dataset = data.map(
preprocess_and_tokenize,
batched=True,
num_proc=num_proc,
load_from_cache_file=True,
desc='Tokenizing')
if dataset_name == 'ptb':
tokenized_dataset = tokenized_dataset.remove_columns(
'sentence')
elif 'scientific_papers' in dataset_name:
tokenized_dataset = tokenized_dataset.remove_columns([
'article', 'abstract', 'section_names'])
elif dataset_name == 'ag_news':
tokenized_dataset = tokenized_dataset.remove_columns(
['text', 'label'])
else:
tokenized_dataset = tokenized_dataset.remove_columns(
'text')
if not wrap:
tokenized_dataset.save_to_disk(_path)
return tokenized_dataset.with_format('torch')
group_texts = functools.partial(
_group_texts, block_size=block_size, bos=BOS, eos=EOS)
if streaming:
chunked_dataset = tokenized_dataset.map(
group_texts,
batched=True,
desc='Grouping')
else:
chunked_dataset = tokenized_dataset.map(
group_texts,
batched=True,
num_proc=num_proc,
load_from_cache_file=True,
desc='Grouping')
chunked_dataset.save_to_disk(_path)
chunked_dataset = chunked_dataset.with_format('torch')
return chunked_dataset
def get_tokenizer(config):
if config.data.tokenizer_name_or_path == 'text8':
tokenizer = Text8Tokenizer()
elif config.data.tokenizer_name_or_path == 'bert-base-uncased':
tokenizer = transformers.BertTokenizer.\
from_pretrained('bert-base-uncased')
else:
tokenizer = transformers.AutoTokenizer.from_pretrained(
config.data.tokenizer_name_or_path)
if (isinstance(tokenizer, transformers.GPT2TokenizerFast)
or isinstance(tokenizer, transformers.GPT2Tokenizer)):
tokenizer._tokenizer.post_processor = tokenizers.processors.BertProcessing(
(tokenizer.bos_token, tokenizer.bos_token_id),
(tokenizer.eos_token, tokenizer.eos_token_id))
# For wrapped batches:
# [BOS] sent1 [EOS] sent2-fragment [EOS]
# [BOS] sent2-fragment [EOS] sent3 [EOS]
if tokenizer.bos_token is None:
if tokenizer.cls_token is None:
raise AttributeError(
'Tokenizer must have a bos_token or '
f'cls_token: {tokenizer}')
tokenizer.bos_token = tokenizer.cls_token
if tokenizer.eos_token is None:
if tokenizer.sep_token is None:
raise AttributeError(
'Tokenizer must have a eos_token '
f'or sep_token: {tokenizer}')
tokenizer.eos_token = tokenizer.sep_token
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
return tokenizer
def get_dataloaders(config, tokenizer, skip_train=False,
skip_valid=False, valid_seed=None):
num_gpus = torch.cuda.device_count()
assert (config.loader.global_batch_size
== (config.loader.batch_size
* config.trainer.num_nodes
* num_gpus
* config.trainer.accumulate_grad_batches))
if config.loader.global_batch_size % (
num_gpus * config.trainer.accumulate_grad_batches) != 0:
raise ValueError(
f'Train Batch Size {config.training.batch_size}'
f'not divisible by {num_gpus} gpus with accumulation '
f'{config.trainer.accumulate_grad_batches}.')
if config.loader.eval_global_batch_size % num_gpus != 0:
raise ValueError(
f'Eval Batch Size for {config.eval.batch_size} '
f'not divisible by {num_gpus}.')
if skip_train:
train_set = None
else:
train_set = get_dataset(
config.data.train,
tokenizer,
mode='train',
wrap=config.data.wrap,
#cache_dir=config.data.cache_dir,
block_size=config.model.length)
if config.data.valid in ['text8', 'lm1b', 'ag_news']:
validation_split = 'test'
else:
validation_split = 'validation'
if skip_valid:
valid_set = None
else:
valid_set = get_dataset(
config.data.valid,
tokenizer,
wrap=config.data.wrap,
mode=validation_split,
#cache_dir=config.data.cache_dir,
block_size=config.model.length,
streaming=False)
if skip_train:
train_loader = None
else:
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=config.loader.batch_size,
num_workers=config.loader.num_workers,
pin_memory=config.loader.pin_memory,
shuffle=not config.data.streaming,
persistent_workers=True)
train_loader.tokenizer = tokenizer
if skip_valid:
valid_loader = None
else:
if valid_seed is None:
shuffle_valid = False
generator = None
else:
shuffle_valid = True
generator = torch.Generator().manual_seed(valid_seed)
valid_loader = torch.utils.data.DataLoader(
valid_set,
batch_size=config.loader.eval_batch_size,
num_workers=config.loader.num_workers,
pin_memory=config.loader.pin_memory,
shuffle=shuffle_valid,
generator=generator)
# Will be used in generative perplexity calculation
valid_loader.tokenizer = tokenizer
return train_loader, valid_loader
# Samplers adapted from: https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/fault_tolerant_sampler.py
class RandomFaultTolerantSampler(torch.utils.data.RandomSampler):
def __init__(self, *args, generator=None, **kwargs):
# TD [2022-07-17]: We don't force the seed to be zero. We generate random seed,
# which should be reproducible if pl.seed_everything was called beforehand.
# This means that changing the seed of the experiment will also change the
# sampling order.
if generator is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
generator = torch.Generator().manual_seed(seed)
kwargs.pop('shuffle', None)
super().__init__(*args, generator=generator, **kwargs)
self.counter = 0
self.restarting = False
def state_dict(self):
return {'random_state': self.generator.get_state(),
'counter': self.counter}
def load_state_dict(self, state_dict):
self.generator.set_state(state_dict.get('random_state'))
self.counter = state_dict['counter']
# self.start_counter = self.counter
self.restarting = True
# TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
# epoch, and subsequent epoch will have very few batches.
def __iter__(self) -> typing.Iterator[int]:
n = len(self.data_source)
self.state = self.generator.get_state()
indices = torch.randperm(n, generator=self.generator).tolist()
if not self.restarting:
self.counter = 0
else:
indices = indices[self.counter:]
self.restarting = False
for index in indices:
self.counter += 1
yield index
self.counter = 0
class FaultTolerantDistributedSampler(torch.utils.data.DistributedSampler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.counter = 0
self.restarting = False
def state_dict(self):
return {'epoch': self.epoch, 'counter': self.counter}
def load_state_dict(self, state_dict):
self.epoch = state_dict['epoch']
self.counter = state_dict['counter']
self.restarting = True
# TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
# epoch, and subsequent epoch will have very few batches.
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(
padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[:self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
if not self.restarting:
self.counter = 0
else:
indices = indices[self.counter:]
self.restarting = False
for index in indices:
self.counter += 1
yield index
self.counter = 0
from torch.utils.data import Dataset, DataLoader
import lightning.pytorch as pl
from functools import partial
import sys
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, dataset, indices):
self.dataset = dataset
self.indices = indices
def __len__(self):
return len(self.indices)
def __getitem__(self, idx):
actual_idx = int(self.indices[idx])
item = self.dataset[actual_idx]
return item
def membrane_collate_fn(batch, tokenizer):
"""Custom data collator that masks TM/soluble residues for focused training"""
MAX_LENGTH = 1024
sequences = [item['Sequence'].upper() for item in batch]
masks = []
for item in batch:
if item["Label"] == 0:
mask = [1 if i.isupper() else 0 for i in item["Sequence"]]
else:
mask = [0 if i.isupper() else 1 for i in item["Sequence"]]
mask = [1] + mask
if len(mask) > MAX_LENGTH: # Truncate
mask = mask[:MAX_LENGTH]
elif len(mask) < MAX_LENGTH: # Pad
mask += [1] * (MAX_LENGTH - len(mask))
masks.append(torch.as_tensor(mask))
mask_t = torch.stack(masks, dim=0)
tokens = tokenizer(sequences, return_tensors='pt', padding='max_length', truncation=True, max_length=MAX_LENGTH)
return {
'input_ids': tokens['input_ids'],
'attention_mask': tokens['attention_mask'],
'mask': mask_t
}
def wrap_collate_fn(batch, tokenizer):
"""Standard data collator that wraps sequences over padding them"""
# Define sequence size
chunk_size = 1024
eos_placeholder = "k"
eos = "<eos>"
# Wrap sequences by collecting and splitting them into chunks
# From MDLM paper: insert <eos> at start/end of chunks and in between sequences
sequences = eos_placeholder.join([item['Sequence'].upper() for item in batch])
sequences = eos_placeholder + sequences + eos_placeholder
wrapped_sequences = [sequences[i:i+chunk_size] for i in range(0, len(sequences), chunk_size)]
for idx, seq in enumerate(wrapped_sequences):
wrapped_sequences[idx] = seq.replace(eos_placeholder, eos)
# Tokenize for input ids and attention masks
tokens = tokenizer(wrapped_sequences, return_tensors='pt', padding=True)
return {
"input_ids": tokens['input_ids'],
"attention_mask": tokens['attention_mask']
}
def collate_fn(batch, tokenizer):
"""Standard data collator that truncates/pad sequences based on max_length"""
sequences = [item['Sequence'].upper() for item in batch]
max_len = max([len(seq) for seq in sequences])
#labels = torch.tensor([item['labels'] for item in batch], dtype=torch.float32)
tokens = tokenizer(sequences, return_tensors='pt', padding='max_length', truncation=True, max_length=1024)
#attention_masks = torch.ones(tokens.size()[:2], dtype=torch.bool)
return {
'input_ids': tokens['input_ids'],
'attention_mask': tokens['attention_mask']
}
class CustomDataModule(pl.LightningDataModule):
def __init__(self, train_dataset, val_dataset, test_dataset, tokenizer, batch_size: int=8, collate_fn=collate_fn):
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.batch_size = batch_size
self.tokenizer = tokenizer
self.collate_fn = collate_fn
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size,
collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
num_workers=8, pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.batch_size,
collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
num_workers=8, pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.batch_size,
collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
num_workers=8, pin_memory=True)
|