File size: 26,358 Bytes
d061944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
import functools
import itertools
import json
import math
import os
import re
import shutil
import typing
import urllib
import zipfile

import datasets
import fsspec
import requests
import tokenizers
import torch
import transformers

import utils

LOGGER = utils.get_logger(__name__)


def wt_detokenizer(string):
  # contractions
  string = string.replace("s '", "s'")
  string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
  # number separators
  string = string.replace(" @-@ ", "-")
  string = string.replace(" @,@ ", ",")
  string = string.replace(" @.@ ", ".")
  # punctuation
  string = string.replace(" : ", ": ")
  string = string.replace(" ; ", "; ")
  string = string.replace(" . ", ". ")
  string = string.replace(" ! ", "! ")
  string = string.replace(" ? ", "? ")
  string = string.replace(" , ", ", ")
  # double brackets
  string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
  string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
  string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
  string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
  string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
  # miscellaneous
  string = string.replace("= = = =", "====")
  string = string.replace("= = =", "===")
  string = string.replace("= =", "==")
  string = string.replace(" " + chr(176) + " ", chr(176))
  string = string.replace(" \n", "\n")
  string = string.replace("\n ", "\n")
  string = string.replace(" N ", " 1 ")
  string = string.replace(" 's", "'s")
  return string


def ptb_detokenizer(x):
  x = x.replace(" 's", "'s")
  x = x.replace("s ' ", "s' ")
  x = x.replace(" n't", "n't")
  x = x.replace(" \n ", "\n")
  x = x.replace("\\/", "/")
  for _ in range(10):
      x = x.replace(" N ", " 1 ")
  x = x.replace("$ 1", "$1")
  x = x.replace("# 1", "#1")
  x = x.replace("<unk>", "?")
  return x


def lm1b_detokenizer(x):
  x = x.replace('http : / / ', 'http://')
  x = x.replace('https : / / ', 'https://')
  x = re.sub(r' \'(\w+)', r"'\1", x)
  x = re.sub(r' (\w+) \. ', r' \1. ', x)
  x = re.sub(r' (\w+) \.$', r' \1.', x)
  x = x.replace(' ? ', '? ')
  x = re.sub(r' \?$', '?', x)
  x = x.replace(' ! ', '! ')
  x = re.sub(r' \!$', '!', x)
  x = x.replace(' , ', ', ')
  x = x.replace(' : ', ': ')
  x = x.replace(' ; ', '; ')
  x = x.replace(' / ', '/')
  x = re.sub(r'\" ([^\"]+) \"', r'"\1"', x)
  x = re.sub(r'\' ([^\']+) \'', r"'\1'", x)
  x = re.sub(r'\( ([^\(\)]+) \)', r"(\1)", x)
  x = re.sub(r'\[ ([^\[\]]+) \]', r"[\1]", x)
  x = x.replace('$ ', '$')
  x = x.replace('£ ', '£')
  return x


def lambada_detokenizer(text):
  text = text.replace("“", '"')
  text = text.replace("”", '"')
  return '\n'+text.strip()


def scientific_papers_detokenizer(x):
  x = wt_detokenizer(x)
  x = lm1b_detokenizer(x)
  return x


class Text8Tokenizer(transformers.PreTrainedTokenizer):
  def __init__(
    self,
    bos_token='[BOS]',
    eos_token='[EOS]',
    sep_token='[SEP]',
    cls_token='[CLS]',
    pad_token='[PAD]',
    mask_token='[MASK]',
    unk_token='[UNK]',
    **kwargs):
    self.characters = list('abcdefghijklmnopqrstuvwxyz ')
    self._vocab_str_to_int = {
      '[CLS]': 0,
      '[SEP]': 1,
      '[BOS]': 2,
      '[EOS]': 3,
      '[MASK]': 4,
      '[PAD]': 5,
      '[RESERVED]': 6,
      '[UNK]': 7,
      ** {ch: i + 8 for i, ch in enumerate(self.characters)}}
    self._vocab_int_to_str = {
      v: k for k, v in self._vocab_str_to_int.items()}
    super().__init__(
      bos_token=bos_token,
      eos_token=eos_token,
      sep_token=sep_token,
      cls_token=cls_token,
      pad_token=pad_token,
      mask_token=mask_token,
      unk_token=unk_token,
      **kwargs)

  @property
  def vocab_size(self) -> int:
    return len(self._vocab_str_to_int)

  def _tokenize(self, text: str, **kwargs) -> typing.List[str]:
    return list(text.lower())

  def _convert_token_to_id(self, token: str) -> int:
    return self._vocab_str_to_int.get(
      token, self._vocab_str_to_int['[UNK]'])

  def _convert_id_to_token(self, index: int) -> str:
    return self._vocab_int_to_str[index]

  def convert_tokens_to_string(self, tokens):
    return ''.join(tokens)

  def get_vocab(self) -> typing.Dict[str, int]:
    return self._vocab_str_to_int


def get_lambada_test_dataset():
    url = "https://openaipublic.blob.core.windows.net/gpt-2/data/lambada_test.jsonl"

    def read_jsonl_to_list(url):
      response = requests.get(url, stream=True)
      data_list = []

      # Process each line in the response content
      for line in response.iter_lines(decode_unicode=True):
        if line:
          data = json.loads(line)
          data_list.append(data)

      return data_list

    lambada_data = read_jsonl_to_list(url)
    dataset = datasets.Dataset.from_list(lambada_data)
    return dataset

def get_text8_dataset(cache_dir, max_seq_length=256,
                      drop_last=True, crop_train=False):
  """Adapted from:
    https://github.com/google-research/google-research/blob/master/d3pm/text/datasets.py#L344

    Args:
      cache_dir: str, path to cache directory.
      max_seq_length: int, maximum length of sequences.
          (default: 256, as in D3PM codebase.)
      drop_last: bool, whether to drop the last incomplete
          batch. (default: True, as in D3PM codebase.)
      crop_train: bool, whether to subsample contiguous
          subsequences from training example. serves to
          make sure transformer models with absolute position
          embeddings do not have incorrect position-wise
          marginals. (default: False, but necessary to match D3PM AR)

    Returns:
      dataset: dataset.DatasetDict, with keys 'train',
          'valid', 'test'.
  """
  url = 'http://mattmahoney.net/dc/text8.zip'
  if not crop_train:
    cache_dir = f'{cache_dir}/text8'
  else:
    cache_dir = f'{cache_dir}/text8-crop-train'
  split_names = ['train', 'validation', 'test']
  if not all([
    utils.fsspec_exists(os.path.join(cache_dir, split))
    for split in split_names
  ]):
    # Check if raw data exists
    raw_cache_dir = os.path.join(cache_dir, 'raw_data')
    if not all([
      utils.fsspec_exists(
        os.path.join(raw_cache_dir, f'text8.{split}.txt'))
      for split in split_names
    ]):
      if not utils.fsspec_exists(
        os.path.join(raw_cache_dir, 'text8.zip')):
        utils.fsspec_mkdirs(raw_cache_dir, exist_ok=True)
        LOGGER.info('Downloading text8 from URL {}.'.format(url))
        with urllib.request.urlopen(url) as in_stream:
          with open(os.path.join(raw_cache_dir, 'text8.zip'), 'wb') as out_file:
            shutil.copyfileobj(in_stream, out_file)

      with fsspec.open(
        os.path.join(raw_cache_dir, 'text8.zip'),
        'rb') as f:
        rawdata = zipfile.ZipFile(f).read(
          'text8').decode('utf-8')

      # Splits taken from D3PM codebase
      splits = {
        'train': rawdata[:90000000],
        'validation': rawdata[90000000: 95000000],
        'test': rawdata[95000000:],
      }

      for split, data in splits.items():
        _path = os.path.join(raw_cache_dir,
                             f'text8.{split}.txt')
        with fsspec.open(_path, 'w') as f:
          f.write(data)
    else:
      splits = {}
      for split in split_names:
        _path = os.path.join(raw_cache_dir,
                             f'text8.{split}.txt')
        with fsspec.open(_path, 'r') as f:
          splits[split] = f.read()

    # Chunk and save as datasets.DatasetDict
    def chunks(lst, n):
      """Yield successive n-sized chunks from lst."""
      for i in range(0, len(lst), n):
        yield lst[i:i + n]

    dataset_dict = {}
    for k, v in splits.items():
      if k == 'train' and crop_train == True:
        chunk_size = 2 * max_seq_length
      else:
        chunk_size = max_seq_length
      text = list(chunks(v, chunk_size))
      if drop_last and len(text[-1]) < chunk_size:
        text = text[:-1]
      dataset_dict[k] = datasets.Dataset.from_dict({'text': text})
    dataset = datasets.DatasetDict(dataset_dict)
    dataset.save_to_disk(cache_dir)
  else:
    dataset = datasets.load_from_disk(cache_dir)

  return dataset


def _group_texts(examples, block_size, bos, eos):
  # Concatenate all texts.
  concatenated_examples = list(itertools.chain(* examples['input_ids']))
  total_length = len(concatenated_examples)
  # TODO(yair): look into not dropping the remainder but rather padding it.
  # We drop the small remainder, and if the total_length < block_size - 2
  # we exclude this batch and return an empty dict.
  # We could add padding if the model supported it instead of
  # this drop, you can customize this part to your needs.
  new_block_size = block_size - 2  # [BOS] and [EOS] to be added
  total_length = (total_length // new_block_size) * new_block_size
  # Split by chunks of max_len.
  result = {}
  _values = []
  _attn_masks = []
  for i in range(0, total_length, new_block_size):
    _values.append(
      [bos]
      + concatenated_examples[i : i + new_block_size]
      + [eos])
    _attn_masks.append(torch.ones(block_size))
  result['input_ids'] = _values
  result['attention_mask'] = _attn_masks
  return result


def get_dataset(
    dataset_name, tokenizer, wrap, mode, cache_dir,
    block_size=1024, num_proc=len(os.sched_getaffinity(0)), streaming=False):
  if wrap:
    filename = f'{dataset_name}_{mode}_bs{block_size}_wrapped.dat'
  else:
    filename = f'{dataset_name}_{mode}_bs{block_size}_unwrapped.dat'
  _path = os.path.join(cache_dir, filename)
  
  if utils.fsspec_exists(_path):
    LOGGER.info(f'Loading data from: {_path}')
    return datasets.load_from_disk(_path).with_format('torch')
  LOGGER.info(f'Generating new data at: {_path}')

  crop_train = dataset_name == 'text8-crop'
  if mode == 'train' and crop_train:
    # double block size for sub-sampling
    block_size *= 2
  
  if dataset_name == 'wikitext103':
    dataset = datasets.load_dataset(
      'wikitext',
      name='wikitext-103-raw-v1',
      cache_dir=cache_dir)
  elif dataset_name == 'wikitext2':
    dataset = datasets.load_dataset(
      'wikitext',
      name='wikitext-2-raw-v1',
      cache_dir=cache_dir)
  elif dataset_name == 'ptb':
    dataset = datasets.load_dataset(
      'ptb_text_only', cache_dir=cache_dir)
  elif dataset_name == 'lambada':
    dataset = get_lambada_test_dataset()
  elif dataset_name == 'text8':
    assert wrap
    dataset = get_text8_dataset(
      cache_dir, max_seq_length=block_size)
  elif dataset_name == 'text8-crop':
    dataset = get_text8_dataset(
      cache_dir, max_seq_length=block_size, crop_train=True)
  elif dataset_name == 'openwebtext-train':
    dataset = datasets.load_dataset(
      'openwebtext',
      split='train[:-100000]',
      cache_dir=cache_dir,
      streaming=streaming)
  elif dataset_name == 'openwebtext-valid':
    dataset = datasets.load_dataset(
      'openwebtext',
      split='train[-100000:]',
      cache_dir=cache_dir,
      streaming=streaming)
  elif dataset_name == 'scientific_papers_arxiv':
    dataset = datasets.load_dataset(
      'scientific_papers', 'arxiv',
      trust_remote_code=True,
      cache_dir=cache_dir,
      streaming=streaming)
  elif dataset_name == 'scientific_papers_pubmed':
    dataset = datasets.load_dataset(
      'scientific_papers', 'pubmed',
      trust_remote_code=True,
      cache_dir=cache_dir,
      streaming=streaming)
  elif dataset_name == 'ag_news':
    dataset = datasets.load_dataset(
      'ag_news',
      cache_dir=cache_dir,
      streaming=streaming)
  else:
    dataset = datasets.load_dataset(
      dataset_name,
      cache_dir=cache_dir,
      streaming=streaming)

  if dataset_name in ['lambada', 'openwebtext-train',
                      'openwebtext-valid']:
    data = dataset
  else:
    data = dataset[mode]

  if dataset_name.startswith('wikitext'):
    detokenizer = wt_detokenizer
  elif dataset_name == 'ptb':
    detokenizer = ptb_detokenizer
  elif dataset_name == 'lm1b':
    detokenizer = lm1b_detokenizer
  elif dataset_name == 'lambada':
    detokenizer = lambada_detokenizer
  elif dataset_name.startswith('scientific_papers'):
    detokenizer = scientific_papers_detokenizer
  else:
    detokenizer = None

  def _apply_detokenizer(detokenizer):
    def detok(text):
      for i, t in enumerate(text, 0):
        text[i] = detokenizer(t)
      return text
    return detok
  
  EOS = tokenizer.encode(tokenizer.eos_token)[0]
  BOS = tokenizer.encode(tokenizer.bos_token)[0]

  def preprocess_and_tokenize(example):
    if dataset_name == 'ptb':
      text = example['sentence']
    elif 'scientific_papers' in dataset_name:
      text = example['article']
    else:
      text = example['text']
    
    if detokenizer is not None:
      text = _apply_detokenizer(detokenizer)(text)

    tokenizer.padding_side = 'right'
    tokenizer.truncation_side = 'right'

    if wrap:
      tokens = tokenizer(text,
                         add_special_tokens=False,
                         return_attention_mask=False,
                         return_token_type_ids=False)
      tokens = {'input_ids':
                [t + [EOS] for t in tokens['input_ids']]}
      # Still missing BOS, but will be added in group_texts
    else:
      tokens = tokenizer(text,
                         max_length=block_size,
                         padding='max_length',
                         truncation=True,
                         add_special_tokens=True,
                         return_attention_mask=True,
                         return_token_type_ids=True)
    return tokens

  if streaming:
    tokenized_dataset = data.map(
      preprocess_and_tokenize,
      batched=True,
      desc='Tokenizing')
  else:
    tokenized_dataset = data.map(
      preprocess_and_tokenize,
      batched=True,
      num_proc=num_proc,
      load_from_cache_file=True,
      desc='Tokenizing')
  if dataset_name == 'ptb':
    tokenized_dataset = tokenized_dataset.remove_columns(
      'sentence')
  elif 'scientific_papers' in dataset_name:
    tokenized_dataset = tokenized_dataset.remove_columns([
      'article', 'abstract', 'section_names'])
  elif dataset_name == 'ag_news':
    tokenized_dataset = tokenized_dataset.remove_columns(
      ['text', 'label'])
  else:
    tokenized_dataset = tokenized_dataset.remove_columns(
      'text')

  if not wrap:
    tokenized_dataset.save_to_disk(_path)
    return tokenized_dataset.with_format('torch')

  group_texts = functools.partial(
    _group_texts, block_size=block_size, bos=BOS, eos=EOS)
  if streaming:
    chunked_dataset = tokenized_dataset.map(
      group_texts,
      batched=True,
      desc='Grouping')
  else:
    chunked_dataset = tokenized_dataset.map(
      group_texts,
      batched=True,
      num_proc=num_proc,
      load_from_cache_file=True,
      desc='Grouping')
    chunked_dataset.save_to_disk(_path)
  chunked_dataset = chunked_dataset.with_format('torch')
  return chunked_dataset


def get_tokenizer(config):
  if config.data.tokenizer_name_or_path == 'text8':
    tokenizer = Text8Tokenizer()
  elif config.data.tokenizer_name_or_path == 'bert-base-uncased':
    tokenizer = transformers.BertTokenizer.\
      from_pretrained('bert-base-uncased')
  else:
    tokenizer = transformers.AutoTokenizer.from_pretrained(
      config.data.tokenizer_name_or_path)

  if (isinstance(tokenizer, transformers.GPT2TokenizerFast)
      or isinstance(tokenizer, transformers.GPT2Tokenizer)):
    tokenizer._tokenizer.post_processor = tokenizers.processors.BertProcessing(
      (tokenizer.bos_token, tokenizer.bos_token_id),
      (tokenizer.eos_token, tokenizer.eos_token_id))

  # For wrapped batches:
  #  [BOS] sent1 [EOS] sent2-fragment [EOS]
  #  [BOS] sent2-fragment [EOS] sent3 [EOS]
  if tokenizer.bos_token is None:
    if tokenizer.cls_token is None:
      raise AttributeError(
        'Tokenizer must have a bos_token or '
        f'cls_token: {tokenizer}')
    tokenizer.bos_token = tokenizer.cls_token
  if tokenizer.eos_token is None:
    if tokenizer.sep_token is None:
      raise AttributeError(
        'Tokenizer must have a eos_token '
        f'or sep_token: {tokenizer}')
    tokenizer.eos_token = tokenizer.sep_token
  if tokenizer.pad_token is None:
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})

  return tokenizer
    

def get_dataloaders(config, tokenizer, skip_train=False,
                    skip_valid=False, valid_seed=None):
  num_gpus = torch.cuda.device_count()
  assert (config.loader.global_batch_size
          == (config.loader.batch_size
              * config.trainer.num_nodes
              * num_gpus
              * config.trainer.accumulate_grad_batches))
  if config.loader.global_batch_size % (
    num_gpus * config.trainer.accumulate_grad_batches) != 0:
    raise ValueError(
      f'Train Batch Size {config.training.batch_size}'
      f'not divisible by {num_gpus} gpus with accumulation '
      f'{config.trainer.accumulate_grad_batches}.')
  if config.loader.eval_global_batch_size % num_gpus != 0:
    raise ValueError(
      f'Eval Batch Size for {config.eval.batch_size} '
      f'not divisible by {num_gpus}.')
  if skip_train:
    train_set = None
  else:
    train_set = get_dataset(
      config.data.train,
      tokenizer,
      mode='train',
      wrap=config.data.wrap,
      #cache_dir=config.data.cache_dir,
      block_size=config.model.length)
  
  if config.data.valid in ['text8', 'lm1b', 'ag_news']:
    validation_split = 'test'
  else:
    validation_split = 'validation'
  if skip_valid:
    valid_set = None
  else:
    valid_set = get_dataset(
      config.data.valid,
      tokenizer,
      wrap=config.data.wrap,
      mode=validation_split,
      #cache_dir=config.data.cache_dir,
      block_size=config.model.length,
      streaming=False)

  if skip_train:
    train_loader = None
  else:
    train_loader = torch.utils.data.DataLoader(
      train_set,
      batch_size=config.loader.batch_size,
      num_workers=config.loader.num_workers,
      pin_memory=config.loader.pin_memory,
      shuffle=not config.data.streaming,
      persistent_workers=True)
    train_loader.tokenizer = tokenizer
  if skip_valid:
    valid_loader = None
  else:
    if valid_seed is None:
      shuffle_valid = False
      generator = None
    else:
      shuffle_valid = True
      generator = torch.Generator().manual_seed(valid_seed)
    valid_loader = torch.utils.data.DataLoader(
      valid_set,
      batch_size=config.loader.eval_batch_size,
      num_workers=config.loader.num_workers,
      pin_memory=config.loader.pin_memory,
      shuffle=shuffle_valid,
      generator=generator)
    # Will be used in generative perplexity calculation
    valid_loader.tokenizer = tokenizer

  return train_loader, valid_loader


# Samplers adapted from: https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/fault_tolerant_sampler.py


class RandomFaultTolerantSampler(torch.utils.data.RandomSampler):

  def __init__(self, *args, generator=None, **kwargs):
    # TD [2022-07-17]: We don't force the seed to be zero. We generate random seed,
    # which should be reproducible if pl.seed_everything was called beforehand.
    # This means that changing the seed of the experiment will also change the
    # sampling order.
    if generator is None:
      seed = int(torch.empty((), dtype=torch.int64).random_().item())
      generator = torch.Generator().manual_seed(seed)
    kwargs.pop('shuffle', None)
    super().__init__(*args, generator=generator, **kwargs)
    self.counter = 0
    self.restarting = False

  def state_dict(self):
    return {'random_state': self.generator.get_state(),
            'counter': self.counter}

  def load_state_dict(self, state_dict):
    self.generator.set_state(state_dict.get('random_state'))
    self.counter = state_dict['counter']
    # self.start_counter = self.counter
    self.restarting = True

  # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
  # epoch, and subsequent epoch will have very few batches.

  def __iter__(self) -> typing.Iterator[int]:
    n = len(self.data_source)

    self.state = self.generator.get_state()
    indices = torch.randperm(n, generator=self.generator).tolist()

    if not self.restarting:
      self.counter = 0
    else:
      indices = indices[self.counter:]
      self.restarting = False

    for index in indices:
      self.counter += 1
      yield index

    self.counter = 0


class FaultTolerantDistributedSampler(torch.utils.data.DistributedSampler):

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self.counter = 0
    self.restarting = False

  def state_dict(self):
    return {'epoch': self.epoch, 'counter': self.counter}

  def load_state_dict(self, state_dict):
    self.epoch = state_dict['epoch']
    self.counter = state_dict['counter']
    self.restarting = True

  # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
  # epoch, and subsequent epoch will have very few batches.
  def __iter__(self):
    if self.shuffle:
      # deterministically shuffle based on epoch and seed
      g = torch.Generator()
      g.manual_seed(self.seed + self.epoch)
      indices = torch.randperm(len(self.dataset), generator=g).tolist()  # type: ignore[arg-type]
    else:
      indices = list(range(len(self.dataset)))  # type: ignore[arg-type]

    if not self.drop_last:
      # add extra samples to make it evenly divisible
      padding_size = self.total_size - len(indices)
      if padding_size <= len(indices):
        indices += indices[:padding_size]
      else:
        indices += (indices * math.ceil(
          padding_size / len(indices)))[:padding_size]
    else:
      # remove tail of data to make it evenly divisible.
      indices = indices[:self.total_size]
    assert len(indices) == self.total_size

    # subsample
    indices = indices[self.rank:self.total_size:self.num_replicas]
    assert len(indices) == self.num_samples

    if not self.restarting:
      self.counter = 0
    else:
      indices = indices[self.counter:]
      self.restarting = False

    for index in indices:
      self.counter += 1
      yield index

    self.counter = 0
    
from torch.utils.data import Dataset, DataLoader
import lightning.pytorch as pl
from functools import partial
import sys

class CustomDataset(torch.utils.data.Dataset):
  def __init__(self, dataset, indices):
    self.dataset = dataset
    self.indices = indices

  def __len__(self):
    return len(self.indices)

  def __getitem__(self, idx):
    actual_idx = int(self.indices[idx])
    item = self.dataset[actual_idx]
    return item
      
def membrane_collate_fn(batch, tokenizer):
    """Custom data collator that masks TM/soluble residues for focused training"""
    MAX_LENGTH = 1024
    sequences = [item['Sequence'].upper() for item in batch]

    masks = []
    for item in batch:
      if item["Label"] == 0:
        mask = [1 if i.isupper() else 0 for i in item["Sequence"]]
      else:
        mask = [0 if i.isupper() else 1 for i in item["Sequence"]]
      mask = [1] + mask
      if len(mask) > MAX_LENGTH: # Truncate
        mask = mask[:MAX_LENGTH]
      elif len(mask) < MAX_LENGTH: # Pad
        mask += [1] * (MAX_LENGTH - len(mask))
      
      masks.append(torch.as_tensor(mask))
    
    mask_t = torch.stack(masks, dim=0)
    tokens = tokenizer(sequences, return_tensors='pt', padding='max_length', truncation=True, max_length=MAX_LENGTH)

    return {
        'input_ids': tokens['input_ids'],
        'attention_mask': tokens['attention_mask'],
        'mask': mask_t
    }

def wrap_collate_fn(batch, tokenizer):
  """Standard data collator that wraps sequences over padding them"""
  # Define sequence size
  chunk_size = 1024
  eos_placeholder = "k"
  eos = "<eos>"

  # Wrap sequences by collecting and splitting them into chunks
  # From MDLM paper: insert <eos> at start/end of chunks and in between sequences
  sequences = eos_placeholder.join([item['Sequence'].upper() for item in batch])
  sequences = eos_placeholder + sequences + eos_placeholder
  wrapped_sequences = [sequences[i:i+chunk_size] for i in range(0, len(sequences), chunk_size)]
  for idx, seq in enumerate(wrapped_sequences):
    wrapped_sequences[idx] = seq.replace(eos_placeholder, eos)

  # Tokenize for input ids and attention masks
  tokens = tokenizer(wrapped_sequences, return_tensors='pt', padding=True)

  return {
    "input_ids": tokens['input_ids'],
    "attention_mask": tokens['attention_mask']
  }



def collate_fn(batch, tokenizer):
    """Standard data collator that truncates/pad sequences based on max_length"""
    sequences = [item['Sequence'].upper() for item in batch]
    max_len = max([len(seq) for seq in sequences])
    #labels = torch.tensor([item['labels'] for item in batch], dtype=torch.float32)

    tokens = tokenizer(sequences, return_tensors='pt', padding='max_length', truncation=True, max_length=1024)

    #attention_masks = torch.ones(tokens.size()[:2], dtype=torch.bool)

    return {
        'input_ids': tokens['input_ids'],
        'attention_mask': tokens['attention_mask']
    }

class CustomDataModule(pl.LightningDataModule):
    def __init__(self, train_dataset, val_dataset, test_dataset, tokenizer, batch_size: int=8, collate_fn=collate_fn):
        super().__init__()
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.test_dataset = test_dataset
        self.batch_size = batch_size
        self.tokenizer = tokenizer
        self.collate_fn = collate_fn

    def train_dataloader(self):
        return DataLoader(self.train_dataset, batch_size=self.batch_size,
                          collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
                          num_workers=8, pin_memory=True)
    

    def val_dataloader(self):
        return DataLoader(self.val_dataset, batch_size=self.batch_size,
                          collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
                          num_workers=8, pin_memory=True)
  
    def test_dataloader(self):
        return DataLoader(self.test_dataset, batch_size=self.batch_size,
                          collate_fn=partial(self.collate_fn, tokenizer=self.tokenizer),
                          num_workers=8, pin_memory=True)