nRuaif commited on
Commit
57a4da4
·
1 Parent(s): 5957a98

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: microsoft/Orca-2-13b
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: qlora-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # qlora-out
16
+
17
+ This model is a fine-tuned version of [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.5966
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 2
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 8
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_steps: 50
47
+ - num_epochs: 2
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 1.645 | 0.23 | 100 | 1.6467 |
54
+ | 1.6459 | 0.45 | 200 | 1.6197 |
55
+ | 1.5916 | 0.68 | 300 | 1.6115 |
56
+ | 1.3587 | 0.9 | 400 | 1.6088 |
57
+ | 1.5232 | 1.12 | 500 | 1.6029 |
58
+ | 1.7568 | 1.34 | 600 | 1.6010 |
59
+ | 1.6536 | 1.57 | 700 | 1.5978 |
60
+ | 1.7821 | 1.8 | 800 | 1.5966 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.35.1
66
+ - Pytorch 2.0.1+cu118
67
+ - Datasets 2.14.7
68
+ - Tokenizers 0.14.1
Untitled.ipynb ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "2416e8ad-7826-4bb6-8164-74b25e985cc3",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "Token will not been saved to git credential helper. Pass `add_to_git_credential=True` if you want to set the git credential as well.\n",
14
+ "Token is valid (permission: write).\n",
15
+ "Your token has been saved to /root/.cache/huggingface/token\n",
16
+ "Login successful\n"
17
+ ]
18
+ },
19
+ {
20
+ "data": {
21
+ "application/vnd.jupyter.widget-view+json": {
22
+ "model_id": "83545320358d42d281a156c7218a6d7d",
23
+ "version_major": 2,
24
+ "version_minor": 0
25
+ },
26
+ "text/plain": [
27
+ "adapter_model.safetensors: 0%| | 0.00/501M [00:00<?, ?B/s]"
28
+ ]
29
+ },
30
+ "metadata": {},
31
+ "output_type": "display_data"
32
+ },
33
+ {
34
+ "data": {
35
+ "application/vnd.jupyter.widget-view+json": {
36
+ "model_id": "721787676a094649b2628451be2d4dbe",
37
+ "version_major": 2,
38
+ "version_minor": 0
39
+ },
40
+ "text/plain": [
41
+ "rng_state.pth: 0%| | 0.00/14.6k [00:00<?, ?B/s]"
42
+ ]
43
+ },
44
+ "metadata": {},
45
+ "output_type": "display_data"
46
+ },
47
+ {
48
+ "data": {
49
+ "application/vnd.jupyter.widget-view+json": {
50
+ "model_id": "bb346063ffcb4bb79c6fd2de19e9c3e5",
51
+ "version_major": 2,
52
+ "version_minor": 0
53
+ },
54
+ "text/plain": [
55
+ "training_args.bin: 0%| | 0.00/4.54k [00:00<?, ?B/s]"
56
+ ]
57
+ },
58
+ "metadata": {},
59
+ "output_type": "display_data"
60
+ },
61
+ {
62
+ "data": {
63
+ "application/vnd.jupyter.widget-view+json": {
64
+ "model_id": "9b32558fcff04f8ebe7406dc211e2020",
65
+ "version_major": 2,
66
+ "version_minor": 0
67
+ },
68
+ "text/plain": [
69
+ "scheduler.pt: 0%| | 0.00/627 [00:00<?, ?B/s]"
70
+ ]
71
+ },
72
+ "metadata": {},
73
+ "output_type": "display_data"
74
+ },
75
+ {
76
+ "data": {
77
+ "application/vnd.jupyter.widget-view+json": {
78
+ "model_id": "b8ae21de7cdd4fc0a9b2f2c0d6831d91",
79
+ "version_major": 2,
80
+ "version_minor": 0
81
+ },
82
+ "text/plain": [
83
+ "adapter_model.bin: 0%| | 0.00/501M [00:00<?, ?B/s]"
84
+ ]
85
+ },
86
+ "metadata": {},
87
+ "output_type": "display_data"
88
+ },
89
+ {
90
+ "data": {
91
+ "application/vnd.jupyter.widget-view+json": {
92
+ "model_id": "8e88e53f527f4d909bac26964562a544",
93
+ "version_major": 2,
94
+ "version_minor": 0
95
+ },
96
+ "text/plain": [
97
+ "Upload 6 LFS files: 0%| | 0/6 [00:00<?, ?it/s]"
98
+ ]
99
+ },
100
+ "metadata": {},
101
+ "output_type": "display_data"
102
+ },
103
+ {
104
+ "data": {
105
+ "application/vnd.jupyter.widget-view+json": {
106
+ "model_id": "69f9a82abb7c4d9fa60d92a7452194c0",
107
+ "version_major": 2,
108
+ "version_minor": 0
109
+ },
110
+ "text/plain": [
111
+ "tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s]"
112
+ ]
113
+ },
114
+ "metadata": {},
115
+ "output_type": "display_data"
116
+ }
117
+ ],
118
+ "source": [
119
+ "!huggingface-cli login --token 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\n",
120
+ "from huggingface_hub import HfApi\n",
121
+ "\n",
122
+ "api = HfApi()\n",
123
+ "\n",
124
+ "# Upload all the content from the local folder to your remote Space.\n",
125
+ "# By default, files are uploaded at the root of the repo\n",
126
+ "\n",
127
+ "api.upload_folder(\n",
128
+ "\n",
129
+ " folder_path=\"/workspace/axolotl/qlora-out\",\n",
130
+ "\n",
131
+ " repo_id=\"nRuaif/Testing_orca\",\n",
132
+ "\n",
133
+ " repo_type=\"model\",\n",
134
+ "\n",
135
+ ")"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": null,
141
+ "id": "3c6a284d-3e1c-46e5-b77d-1ad91f4bbf49",
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": []
145
+ }
146
+ ],
147
+ "metadata": {
148
+ "kernelspec": {
149
+ "display_name": "Python 3 (ipykernel)",
150
+ "language": "python",
151
+ "name": "python3"
152
+ },
153
+ "language_info": {
154
+ "codemirror_mode": {
155
+ "name": "ipython",
156
+ "version": 3
157
+ },
158
+ "file_extension": ".py",
159
+ "mimetype": "text/x-python",
160
+ "name": "python",
161
+ "nbconvert_exporter": "python",
162
+ "pygments_lexer": "ipython3",
163
+ "version": "3.10.13"
164
+ }
165
+ },
166
+ "nbformat": 4,
167
+ "nbformat_minor": 5
168
+ }
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Orca-2-13b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "down_proj",
20
+ "up_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "o_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b989b079724b489fd14c33183c4f2070261ddd08f263cfbde80d0b5d55cd42f7
3
+ size 500897101
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 32002,
3
+ "<|im_start|>": 32001,
4
+ "[PAD]": 32000
5
+ }
checkpoint-400/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: microsoft/Orca-2-13b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
checkpoint-400/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Orca-2-13b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 64,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "down_proj",
20
+ "up_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "o_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1c62787a70f77635cce674888be2fc769ffa4907090f5ced1e428c786d0a084
3
+ size 500770656
checkpoint-400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cd2b592221a94f23bd082ad23d49447f02ec8cb19c1c8c6163603b8ac24b417
3
+ size 14575
checkpoint-400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e63f97842231a81ecd895cbbc697f62a7ab3d723944666deb2a60aec887006e
3
+ size 627
checkpoint-400/trainer_state.json ADDED
@@ -0,0 +1,2451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.6087621450424194,
3
+ "best_model_checkpoint": "./qlora-out/checkpoint-400",
4
+ "epoch": 0.9034443817052513,
5
+ "eval_steps": 100,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2.0000000000000003e-06,
14
+ "loss": 2.6126,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4.000000000000001e-06,
20
+ "loss": 2.4954,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 6e-06,
26
+ "loss": 2.4127,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 8.000000000000001e-06,
32
+ "loss": 2.5176,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 1e-05,
38
+ "loss": 2.2497,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 1.2e-05,
44
+ "loss": 2.4175,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 1.4000000000000001e-05,
50
+ "loss": 2.6525,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1.6000000000000003e-05,
56
+ "loss": 2.1653,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 1.8e-05,
62
+ "loss": 2.1483,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 2e-05,
68
+ "loss": 2.3218,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 2.2000000000000003e-05,
74
+ "loss": 2.2764,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 2.4e-05,
80
+ "loss": 2.2225,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 2.6000000000000002e-05,
86
+ "loss": 2.1253,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 2.8000000000000003e-05,
92
+ "loss": 2.1824,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 3e-05,
98
+ "loss": 2.5585,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 3.2000000000000005e-05,
104
+ "loss": 2.1777,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 3.4000000000000007e-05,
110
+ "loss": 2.3706,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 3.6e-05,
116
+ "loss": 1.7773,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 3.8e-05,
122
+ "loss": 1.9601,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 4e-05,
128
+ "loss": 1.7374,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 4.2e-05,
134
+ "loss": 2.0932,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 4.4000000000000006e-05,
140
+ "loss": 1.6992,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.05,
145
+ "learning_rate": 4.600000000000001e-05,
146
+ "loss": 1.7488,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.05,
151
+ "learning_rate": 4.8e-05,
152
+ "loss": 1.8932,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 5e-05,
158
+ "loss": 1.9512,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 5.2000000000000004e-05,
164
+ "loss": 1.8087,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 5.4000000000000005e-05,
170
+ "loss": 1.7846,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.06,
175
+ "learning_rate": 5.6000000000000006e-05,
176
+ "loss": 1.8874,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 5.8e-05,
182
+ "loss": 1.919,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 6e-05,
188
+ "loss": 1.7985,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 6.2e-05,
194
+ "loss": 1.8528,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.07,
199
+ "learning_rate": 6.400000000000001e-05,
200
+ "loss": 1.8325,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.07,
205
+ "learning_rate": 6.6e-05,
206
+ "loss": 1.596,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 6.800000000000001e-05,
212
+ "loss": 1.9767,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 7e-05,
218
+ "loss": 1.6124,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.08,
223
+ "learning_rate": 7.2e-05,
224
+ "loss": 1.6764,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.08,
229
+ "learning_rate": 7.4e-05,
230
+ "loss": 1.8457,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 7.6e-05,
236
+ "loss": 1.6134,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 7.800000000000001e-05,
242
+ "loss": 1.9267,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.09,
247
+ "learning_rate": 8e-05,
248
+ "loss": 1.8999,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.09,
253
+ "learning_rate": 8.2e-05,
254
+ "loss": 1.6804,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.09,
259
+ "learning_rate": 8.4e-05,
260
+ "loss": 1.8109,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 8.6e-05,
266
+ "loss": 1.7453,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.1,
271
+ "learning_rate": 8.800000000000001e-05,
272
+ "loss": 1.9238,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.1,
277
+ "learning_rate": 9e-05,
278
+ "loss": 1.5639,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.1,
283
+ "learning_rate": 9.200000000000001e-05,
284
+ "loss": 1.7264,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 9.4e-05,
290
+ "loss": 1.9841,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.11,
295
+ "learning_rate": 9.6e-05,
296
+ "loss": 1.5782,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.11,
301
+ "learning_rate": 9.8e-05,
302
+ "loss": 1.8506,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.11,
307
+ "learning_rate": 0.0001,
308
+ "loss": 1.5642,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 9.999964526246879e-05,
314
+ "loss": 1.7945,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 9.999858105490867e-05,
320
+ "loss": 1.7237,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.12,
325
+ "learning_rate": 9.999680739242022e-05,
326
+ "loss": 1.7998,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.12,
331
+ "learning_rate": 9.999432430017084e-05,
332
+ "loss": 1.5217,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.12,
337
+ "learning_rate": 9.999113181339437e-05,
338
+ "loss": 1.8277,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 9.99872299773906e-05,
344
+ "loss": 1.8734,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.13,
349
+ "learning_rate": 9.998261884752462e-05,
350
+ "loss": 1.5751,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.13,
355
+ "learning_rate": 9.99772984892261e-05,
356
+ "loss": 1.773,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.13,
361
+ "learning_rate": 9.997126897798825e-05,
362
+ "loss": 1.392,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 9.996453039936682e-05,
368
+ "loss": 1.7622,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.14,
373
+ "learning_rate": 9.995708284897889e-05,
374
+ "loss": 1.7739,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.14,
379
+ "learning_rate": 9.994892643250147e-05,
380
+ "loss": 1.9572,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.14,
385
+ "learning_rate": 9.994006126567006e-05,
386
+ "loss": 1.6673,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.14,
391
+ "learning_rate": 9.993048747427696e-05,
392
+ "loss": 1.6756,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.15,
397
+ "learning_rate": 9.992020519416948e-05,
398
+ "loss": 1.6236,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.15,
403
+ "learning_rate": 9.990921457124805e-05,
404
+ "loss": 1.6774,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.15,
409
+ "learning_rate": 9.989751576146413e-05,
410
+ "loss": 1.7076,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.15,
415
+ "learning_rate": 9.988510893081799e-05,
416
+ "loss": 1.8763,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.16,
421
+ "learning_rate": 9.98719942553564e-05,
422
+ "loss": 1.6324,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.16,
427
+ "learning_rate": 9.985817192117001e-05,
428
+ "loss": 1.7579,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.16,
433
+ "learning_rate": 9.984364212439088e-05,
434
+ "loss": 1.6983,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.16,
439
+ "learning_rate": 9.982840507118958e-05,
440
+ "loss": 1.6052,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.16,
445
+ "learning_rate": 9.981246097777231e-05,
446
+ "loss": 1.7244,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.17,
451
+ "learning_rate": 9.979581007037776e-05,
452
+ "loss": 1.7328,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.17,
457
+ "learning_rate": 9.977845258527403e-05,
458
+ "loss": 1.5821,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.17,
463
+ "learning_rate": 9.976038876875518e-05,
464
+ "loss": 1.6529,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.17,
469
+ "learning_rate": 9.974161887713775e-05,
470
+ "loss": 1.6353,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.18,
475
+ "learning_rate": 9.972214317675713e-05,
476
+ "loss": 1.5552,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.18,
481
+ "learning_rate": 9.970196194396381e-05,
482
+ "loss": 1.5826,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.18,
487
+ "learning_rate": 9.968107546511942e-05,
488
+ "loss": 1.9228,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.18,
493
+ "learning_rate": 9.965948403659267e-05,
494
+ "loss": 1.7107,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.19,
499
+ "learning_rate": 9.963718796475515e-05,
500
+ "loss": 1.7575,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.19,
505
+ "learning_rate": 9.961418756597702e-05,
506
+ "loss": 1.5771,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.19,
511
+ "learning_rate": 9.959048316662246e-05,
512
+ "loss": 1.8133,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.19,
517
+ "learning_rate": 9.956607510304508e-05,
518
+ "loss": 1.5487,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.19,
523
+ "learning_rate": 9.95409637215831e-05,
524
+ "loss": 1.6759,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.2,
529
+ "learning_rate": 9.951514937855454e-05,
530
+ "loss": 1.8012,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.2,
535
+ "learning_rate": 9.948863244025203e-05,
536
+ "loss": 1.5686,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.2,
541
+ "learning_rate": 9.94614132829377e-05,
542
+ "loss": 1.8649,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.2,
547
+ "learning_rate": 9.943349229283781e-05,
548
+ "loss": 1.7711,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.21,
553
+ "learning_rate": 9.94048698661373e-05,
554
+ "loss": 1.6153,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.21,
559
+ "learning_rate": 9.937554640897413e-05,
560
+ "loss": 1.5359,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.21,
565
+ "learning_rate": 9.934552233743352e-05,
566
+ "loss": 1.2047,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.21,
571
+ "learning_rate": 9.931479807754209e-05,
572
+ "loss": 1.6326,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.21,
577
+ "learning_rate": 9.928337406526172e-05,
578
+ "loss": 1.4582,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.22,
583
+ "learning_rate": 9.925125074648352e-05,
584
+ "loss": 1.5503,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.22,
589
+ "learning_rate": 9.921842857702132e-05,
590
+ "loss": 1.9591,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.22,
595
+ "learning_rate": 9.918490802260538e-05,
596
+ "loss": 1.6741,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.22,
601
+ "learning_rate": 9.915068955887563e-05,
602
+ "loss": 1.5237,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.23,
607
+ "learning_rate": 9.911577367137499e-05,
608
+ "loss": 1.645,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.23,
613
+ "eval_loss": 1.6467467546463013,
614
+ "eval_runtime": 380.1313,
615
+ "eval_samples_per_second": 1.436,
616
+ "eval_steps_per_second": 0.718,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.23,
621
+ "learning_rate": 9.90801608555425e-05,
622
+ "loss": 1.8182,
623
+ "step": 101
624
+ },
625
+ {
626
+ "epoch": 0.23,
627
+ "learning_rate": 9.904385161670625e-05,
628
+ "loss": 1.3908,
629
+ "step": 102
630
+ },
631
+ {
632
+ "epoch": 0.23,
633
+ "learning_rate": 9.900684647007624e-05,
634
+ "loss": 1.39,
635
+ "step": 103
636
+ },
637
+ {
638
+ "epoch": 0.23,
639
+ "learning_rate": 9.896914594073703e-05,
640
+ "loss": 1.643,
641
+ "step": 104
642
+ },
643
+ {
644
+ "epoch": 0.24,
645
+ "learning_rate": 9.893075056364034e-05,
646
+ "loss": 1.6435,
647
+ "step": 105
648
+ },
649
+ {
650
+ "epoch": 0.24,
651
+ "learning_rate": 9.889166088359741e-05,
652
+ "loss": 1.6227,
653
+ "step": 106
654
+ },
655
+ {
656
+ "epoch": 0.24,
657
+ "learning_rate": 9.885187745527133e-05,
658
+ "loss": 1.5884,
659
+ "step": 107
660
+ },
661
+ {
662
+ "epoch": 0.24,
663
+ "learning_rate": 9.881140084316907e-05,
664
+ "loss": 1.5687,
665
+ "step": 108
666
+ },
667
+ {
668
+ "epoch": 0.25,
669
+ "learning_rate": 9.87702316216336e-05,
670
+ "loss": 1.7089,
671
+ "step": 109
672
+ },
673
+ {
674
+ "epoch": 0.25,
675
+ "learning_rate": 9.87283703748356e-05,
676
+ "loss": 1.6631,
677
+ "step": 110
678
+ },
679
+ {
680
+ "epoch": 0.25,
681
+ "learning_rate": 9.868581769676533e-05,
682
+ "loss": 1.6771,
683
+ "step": 111
684
+ },
685
+ {
686
+ "epoch": 0.25,
687
+ "learning_rate": 9.864257419122405e-05,
688
+ "loss": 1.5418,
689
+ "step": 112
690
+ },
691
+ {
692
+ "epoch": 0.26,
693
+ "learning_rate": 9.859864047181552e-05,
694
+ "loss": 1.2749,
695
+ "step": 113
696
+ },
697
+ {
698
+ "epoch": 0.26,
699
+ "learning_rate": 9.855401716193732e-05,
700
+ "loss": 1.5715,
701
+ "step": 114
702
+ },
703
+ {
704
+ "epoch": 0.26,
705
+ "learning_rate": 9.850870489477197e-05,
706
+ "loss": 1.6176,
707
+ "step": 115
708
+ },
709
+ {
710
+ "epoch": 0.26,
711
+ "learning_rate": 9.846270431327793e-05,
712
+ "loss": 1.8423,
713
+ "step": 116
714
+ },
715
+ {
716
+ "epoch": 0.26,
717
+ "learning_rate": 9.841601607018052e-05,
718
+ "loss": 1.5878,
719
+ "step": 117
720
+ },
721
+ {
722
+ "epoch": 0.27,
723
+ "learning_rate": 9.83686408279626e-05,
724
+ "loss": 1.661,
725
+ "step": 118
726
+ },
727
+ {
728
+ "epoch": 0.27,
729
+ "learning_rate": 9.832057925885525e-05,
730
+ "loss": 1.6109,
731
+ "step": 119
732
+ },
733
+ {
734
+ "epoch": 0.27,
735
+ "learning_rate": 9.827183204482817e-05,
736
+ "loss": 1.7273,
737
+ "step": 120
738
+ },
739
+ {
740
+ "epoch": 0.27,
741
+ "learning_rate": 9.822239987757998e-05,
742
+ "loss": 1.8402,
743
+ "step": 121
744
+ },
745
+ {
746
+ "epoch": 0.28,
747
+ "learning_rate": 9.817228345852851e-05,
748
+ "loss": 1.4303,
749
+ "step": 122
750
+ },
751
+ {
752
+ "epoch": 0.28,
753
+ "learning_rate": 9.812148349880076e-05,
754
+ "loss": 1.2896,
755
+ "step": 123
756
+ },
757
+ {
758
+ "epoch": 0.28,
759
+ "learning_rate": 9.807000071922279e-05,
760
+ "loss": 1.6951,
761
+ "step": 124
762
+ },
763
+ {
764
+ "epoch": 0.28,
765
+ "learning_rate": 9.801783585030959e-05,
766
+ "loss": 1.7379,
767
+ "step": 125
768
+ },
769
+ {
770
+ "epoch": 0.28,
771
+ "learning_rate": 9.79649896322546e-05,
772
+ "loss": 1.5715,
773
+ "step": 126
774
+ },
775
+ {
776
+ "epoch": 0.29,
777
+ "learning_rate": 9.791146281491934e-05,
778
+ "loss": 1.9257,
779
+ "step": 127
780
+ },
781
+ {
782
+ "epoch": 0.29,
783
+ "learning_rate": 9.785725615782262e-05,
784
+ "loss": 1.7964,
785
+ "step": 128
786
+ },
787
+ {
788
+ "epoch": 0.29,
789
+ "learning_rate": 9.780237043012987e-05,
790
+ "loss": 1.5906,
791
+ "step": 129
792
+ },
793
+ {
794
+ "epoch": 0.29,
795
+ "learning_rate": 9.774680641064222e-05,
796
+ "loss": 1.7997,
797
+ "step": 130
798
+ },
799
+ {
800
+ "epoch": 0.3,
801
+ "learning_rate": 9.769056488778537e-05,
802
+ "loss": 1.6863,
803
+ "step": 131
804
+ },
805
+ {
806
+ "epoch": 0.3,
807
+ "learning_rate": 9.763364665959849e-05,
808
+ "loss": 1.3936,
809
+ "step": 132
810
+ },
811
+ {
812
+ "epoch": 0.3,
813
+ "learning_rate": 9.757605253372283e-05,
814
+ "loss": 1.6815,
815
+ "step": 133
816
+ },
817
+ {
818
+ "epoch": 0.3,
819
+ "learning_rate": 9.751778332739033e-05,
820
+ "loss": 1.6042,
821
+ "step": 134
822
+ },
823
+ {
824
+ "epoch": 0.3,
825
+ "learning_rate": 9.745883986741196e-05,
826
+ "loss": 1.4678,
827
+ "step": 135
828
+ },
829
+ {
830
+ "epoch": 0.31,
831
+ "learning_rate": 9.739922299016601e-05,
832
+ "loss": 1.5455,
833
+ "step": 136
834
+ },
835
+ {
836
+ "epoch": 0.31,
837
+ "learning_rate": 9.733893354158627e-05,
838
+ "loss": 1.8297,
839
+ "step": 137
840
+ },
841
+ {
842
+ "epoch": 0.31,
843
+ "learning_rate": 9.72779723771499e-05,
844
+ "loss": 1.7075,
845
+ "step": 138
846
+ },
847
+ {
848
+ "epoch": 0.31,
849
+ "learning_rate": 9.721634036186544e-05,
850
+ "loss": 1.7954,
851
+ "step": 139
852
+ },
853
+ {
854
+ "epoch": 0.32,
855
+ "learning_rate": 9.715403837026046e-05,
856
+ "loss": 1.572,
857
+ "step": 140
858
+ },
859
+ {
860
+ "epoch": 0.32,
861
+ "learning_rate": 9.709106728636911e-05,
862
+ "loss": 1.8047,
863
+ "step": 141
864
+ },
865
+ {
866
+ "epoch": 0.32,
867
+ "learning_rate": 9.702742800371971e-05,
868
+ "loss": 1.5607,
869
+ "step": 142
870
+ },
871
+ {
872
+ "epoch": 0.32,
873
+ "learning_rate": 9.696312142532192e-05,
874
+ "loss": 1.6854,
875
+ "step": 143
876
+ },
877
+ {
878
+ "epoch": 0.33,
879
+ "learning_rate": 9.689814846365399e-05,
880
+ "loss": 1.7957,
881
+ "step": 144
882
+ },
883
+ {
884
+ "epoch": 0.33,
885
+ "learning_rate": 9.683251004064988e-05,
886
+ "loss": 1.6497,
887
+ "step": 145
888
+ },
889
+ {
890
+ "epoch": 0.33,
891
+ "learning_rate": 9.676620708768607e-05,
892
+ "loss": 1.5492,
893
+ "step": 146
894
+ },
895
+ {
896
+ "epoch": 0.33,
897
+ "learning_rate": 9.669924054556836e-05,
898
+ "loss": 1.5161,
899
+ "step": 147
900
+ },
901
+ {
902
+ "epoch": 0.33,
903
+ "learning_rate": 9.663161136451861e-05,
904
+ "loss": 1.7488,
905
+ "step": 148
906
+ },
907
+ {
908
+ "epoch": 0.34,
909
+ "learning_rate": 9.656332050416116e-05,
910
+ "loss": 1.6544,
911
+ "step": 149
912
+ },
913
+ {
914
+ "epoch": 0.34,
915
+ "learning_rate": 9.649436893350929e-05,
916
+ "loss": 1.5541,
917
+ "step": 150
918
+ },
919
+ {
920
+ "epoch": 0.34,
921
+ "learning_rate": 9.642475763095134e-05,
922
+ "loss": 1.4365,
923
+ "step": 151
924
+ },
925
+ {
926
+ "epoch": 0.34,
927
+ "learning_rate": 9.635448758423702e-05,
928
+ "loss": 1.5063,
929
+ "step": 152
930
+ },
931
+ {
932
+ "epoch": 0.35,
933
+ "learning_rate": 9.628355979046324e-05,
934
+ "loss": 1.8647,
935
+ "step": 153
936
+ },
937
+ {
938
+ "epoch": 0.35,
939
+ "learning_rate": 9.621197525606e-05,
940
+ "loss": 1.6168,
941
+ "step": 154
942
+ },
943
+ {
944
+ "epoch": 0.35,
945
+ "learning_rate": 9.613973499677614e-05,
946
+ "loss": 1.6571,
947
+ "step": 155
948
+ },
949
+ {
950
+ "epoch": 0.35,
951
+ "learning_rate": 9.606684003766493e-05,
952
+ "loss": 1.4834,
953
+ "step": 156
954
+ },
955
+ {
956
+ "epoch": 0.35,
957
+ "learning_rate": 9.599329141306946e-05,
958
+ "loss": 1.3979,
959
+ "step": 157
960
+ },
961
+ {
962
+ "epoch": 0.36,
963
+ "learning_rate": 9.591909016660807e-05,
964
+ "loss": 1.6255,
965
+ "step": 158
966
+ },
967
+ {
968
+ "epoch": 0.36,
969
+ "learning_rate": 9.584423735115938e-05,
970
+ "loss": 1.4855,
971
+ "step": 159
972
+ },
973
+ {
974
+ "epoch": 0.36,
975
+ "learning_rate": 9.576873402884756e-05,
976
+ "loss": 1.7269,
977
+ "step": 160
978
+ },
979
+ {
980
+ "epoch": 0.36,
981
+ "learning_rate": 9.569258127102707e-05,
982
+ "loss": 1.7885,
983
+ "step": 161
984
+ },
985
+ {
986
+ "epoch": 0.37,
987
+ "learning_rate": 9.561578015826758e-05,
988
+ "loss": 1.6543,
989
+ "step": 162
990
+ },
991
+ {
992
+ "epoch": 0.37,
993
+ "learning_rate": 9.553833178033855e-05,
994
+ "loss": 1.6093,
995
+ "step": 163
996
+ },
997
+ {
998
+ "epoch": 0.37,
999
+ "learning_rate": 9.546023723619386e-05,
1000
+ "loss": 1.5658,
1001
+ "step": 164
1002
+ },
1003
+ {
1004
+ "epoch": 0.37,
1005
+ "learning_rate": 9.538149763395612e-05,
1006
+ "loss": 1.5708,
1007
+ "step": 165
1008
+ },
1009
+ {
1010
+ "epoch": 0.37,
1011
+ "learning_rate": 9.530211409090104e-05,
1012
+ "loss": 1.6403,
1013
+ "step": 166
1014
+ },
1015
+ {
1016
+ "epoch": 0.38,
1017
+ "learning_rate": 9.522208773344147e-05,
1018
+ "loss": 1.2768,
1019
+ "step": 167
1020
+ },
1021
+ {
1022
+ "epoch": 0.38,
1023
+ "learning_rate": 9.514141969711154e-05,
1024
+ "loss": 1.4333,
1025
+ "step": 168
1026
+ },
1027
+ {
1028
+ "epoch": 0.38,
1029
+ "learning_rate": 9.506011112655044e-05,
1030
+ "loss": 1.5742,
1031
+ "step": 169
1032
+ },
1033
+ {
1034
+ "epoch": 0.38,
1035
+ "learning_rate": 9.497816317548625e-05,
1036
+ "loss": 1.4319,
1037
+ "step": 170
1038
+ },
1039
+ {
1040
+ "epoch": 0.39,
1041
+ "learning_rate": 9.489557700671948e-05,
1042
+ "loss": 1.7918,
1043
+ "step": 171
1044
+ },
1045
+ {
1046
+ "epoch": 0.39,
1047
+ "learning_rate": 9.481235379210671e-05,
1048
+ "loss": 1.7546,
1049
+ "step": 172
1050
+ },
1051
+ {
1052
+ "epoch": 0.39,
1053
+ "learning_rate": 9.472849471254386e-05,
1054
+ "loss": 1.6831,
1055
+ "step": 173
1056
+ },
1057
+ {
1058
+ "epoch": 0.39,
1059
+ "learning_rate": 9.46440009579494e-05,
1060
+ "loss": 1.5752,
1061
+ "step": 174
1062
+ },
1063
+ {
1064
+ "epoch": 0.4,
1065
+ "learning_rate": 9.455887372724761e-05,
1066
+ "loss": 1.5413,
1067
+ "step": 175
1068
+ },
1069
+ {
1070
+ "epoch": 0.4,
1071
+ "learning_rate": 9.447311422835142e-05,
1072
+ "loss": 1.6797,
1073
+ "step": 176
1074
+ },
1075
+ {
1076
+ "epoch": 0.4,
1077
+ "learning_rate": 9.438672367814532e-05,
1078
+ "loss": 1.7095,
1079
+ "step": 177
1080
+ },
1081
+ {
1082
+ "epoch": 0.4,
1083
+ "learning_rate": 9.429970330246817e-05,
1084
+ "loss": 1.4101,
1085
+ "step": 178
1086
+ },
1087
+ {
1088
+ "epoch": 0.4,
1089
+ "learning_rate": 9.421205433609568e-05,
1090
+ "loss": 1.7538,
1091
+ "step": 179
1092
+ },
1093
+ {
1094
+ "epoch": 0.41,
1095
+ "learning_rate": 9.412377802272297e-05,
1096
+ "loss": 1.7469,
1097
+ "step": 180
1098
+ },
1099
+ {
1100
+ "epoch": 0.41,
1101
+ "learning_rate": 9.403487561494691e-05,
1102
+ "loss": 1.6779,
1103
+ "step": 181
1104
+ },
1105
+ {
1106
+ "epoch": 0.41,
1107
+ "learning_rate": 9.39453483742483e-05,
1108
+ "loss": 1.5635,
1109
+ "step": 182
1110
+ },
1111
+ {
1112
+ "epoch": 0.41,
1113
+ "learning_rate": 9.385519757097405e-05,
1114
+ "loss": 1.6769,
1115
+ "step": 183
1116
+ },
1117
+ {
1118
+ "epoch": 0.42,
1119
+ "learning_rate": 9.37644244843191e-05,
1120
+ "loss": 1.7653,
1121
+ "step": 184
1122
+ },
1123
+ {
1124
+ "epoch": 0.42,
1125
+ "learning_rate": 9.367303040230828e-05,
1126
+ "loss": 1.6367,
1127
+ "step": 185
1128
+ },
1129
+ {
1130
+ "epoch": 0.42,
1131
+ "learning_rate": 9.358101662177803e-05,
1132
+ "loss": 1.8703,
1133
+ "step": 186
1134
+ },
1135
+ {
1136
+ "epoch": 0.42,
1137
+ "learning_rate": 9.348838444835798e-05,
1138
+ "loss": 1.6888,
1139
+ "step": 187
1140
+ },
1141
+ {
1142
+ "epoch": 0.42,
1143
+ "learning_rate": 9.339513519645249e-05,
1144
+ "loss": 1.7564,
1145
+ "step": 188
1146
+ },
1147
+ {
1148
+ "epoch": 0.43,
1149
+ "learning_rate": 9.330127018922194e-05,
1150
+ "loss": 1.6898,
1151
+ "step": 189
1152
+ },
1153
+ {
1154
+ "epoch": 0.43,
1155
+ "learning_rate": 9.320679075856395e-05,
1156
+ "loss": 1.6917,
1157
+ "step": 190
1158
+ },
1159
+ {
1160
+ "epoch": 0.43,
1161
+ "learning_rate": 9.311169824509454e-05,
1162
+ "loss": 1.6607,
1163
+ "step": 191
1164
+ },
1165
+ {
1166
+ "epoch": 0.43,
1167
+ "learning_rate": 9.301599399812904e-05,
1168
+ "loss": 1.6159,
1169
+ "step": 192
1170
+ },
1171
+ {
1172
+ "epoch": 0.44,
1173
+ "learning_rate": 9.291967937566297e-05,
1174
+ "loss": 1.4132,
1175
+ "step": 193
1176
+ },
1177
+ {
1178
+ "epoch": 0.44,
1179
+ "learning_rate": 9.282275574435281e-05,
1180
+ "loss": 1.6247,
1181
+ "step": 194
1182
+ },
1183
+ {
1184
+ "epoch": 0.44,
1185
+ "learning_rate": 9.272522447949652e-05,
1186
+ "loss": 1.7138,
1187
+ "step": 195
1188
+ },
1189
+ {
1190
+ "epoch": 0.44,
1191
+ "learning_rate": 9.262708696501412e-05,
1192
+ "loss": 1.6365,
1193
+ "step": 196
1194
+ },
1195
+ {
1196
+ "epoch": 0.44,
1197
+ "learning_rate": 9.2528344593428e-05,
1198
+ "loss": 1.5955,
1199
+ "step": 197
1200
+ },
1201
+ {
1202
+ "epoch": 0.45,
1203
+ "learning_rate": 9.242899876584317e-05,
1204
+ "loss": 1.7734,
1205
+ "step": 198
1206
+ },
1207
+ {
1208
+ "epoch": 0.45,
1209
+ "learning_rate": 9.232905089192734e-05,
1210
+ "loss": 1.7847,
1211
+ "step": 199
1212
+ },
1213
+ {
1214
+ "epoch": 0.45,
1215
+ "learning_rate": 9.222850238989103e-05,
1216
+ "loss": 1.6459,
1217
+ "step": 200
1218
+ },
1219
+ {
1220
+ "epoch": 0.45,
1221
+ "eval_loss": 1.619735598564148,
1222
+ "eval_runtime": 380.3616,
1223
+ "eval_samples_per_second": 1.435,
1224
+ "eval_steps_per_second": 0.718,
1225
+ "step": 200
1226
+ },
1227
+ {
1228
+ "epoch": 0.45,
1229
+ "learning_rate": 9.21273546864673e-05,
1230
+ "loss": 1.7114,
1231
+ "step": 201
1232
+ },
1233
+ {
1234
+ "epoch": 0.46,
1235
+ "learning_rate": 9.202560921689166e-05,
1236
+ "loss": 1.591,
1237
+ "step": 202
1238
+ },
1239
+ {
1240
+ "epoch": 0.46,
1241
+ "learning_rate": 9.192326742488152e-05,
1242
+ "loss": 1.6804,
1243
+ "step": 203
1244
+ },
1245
+ {
1246
+ "epoch": 0.46,
1247
+ "learning_rate": 9.182033076261592e-05,
1248
+ "loss": 1.7938,
1249
+ "step": 204
1250
+ },
1251
+ {
1252
+ "epoch": 0.46,
1253
+ "learning_rate": 9.171680069071471e-05,
1254
+ "loss": 1.4387,
1255
+ "step": 205
1256
+ },
1257
+ {
1258
+ "epoch": 0.47,
1259
+ "learning_rate": 9.161267867821802e-05,
1260
+ "loss": 1.5711,
1261
+ "step": 206
1262
+ },
1263
+ {
1264
+ "epoch": 0.47,
1265
+ "learning_rate": 9.150796620256525e-05,
1266
+ "loss": 1.5225,
1267
+ "step": 207
1268
+ },
1269
+ {
1270
+ "epoch": 0.47,
1271
+ "learning_rate": 9.140266474957421e-05,
1272
+ "loss": 1.7374,
1273
+ "step": 208
1274
+ },
1275
+ {
1276
+ "epoch": 0.47,
1277
+ "learning_rate": 9.129677581342e-05,
1278
+ "loss": 1.325,
1279
+ "step": 209
1280
+ },
1281
+ {
1282
+ "epoch": 0.47,
1283
+ "learning_rate": 9.11903008966138e-05,
1284
+ "loss": 1.6654,
1285
+ "step": 210
1286
+ },
1287
+ {
1288
+ "epoch": 0.48,
1289
+ "learning_rate": 9.10832415099816e-05,
1290
+ "loss": 1.7373,
1291
+ "step": 211
1292
+ },
1293
+ {
1294
+ "epoch": 0.48,
1295
+ "learning_rate": 9.097559917264267e-05,
1296
+ "loss": 1.7258,
1297
+ "step": 212
1298
+ },
1299
+ {
1300
+ "epoch": 0.48,
1301
+ "learning_rate": 9.086737541198811e-05,
1302
+ "loss": 1.6344,
1303
+ "step": 213
1304
+ },
1305
+ {
1306
+ "epoch": 0.48,
1307
+ "learning_rate": 9.075857176365911e-05,
1308
+ "loss": 1.5559,
1309
+ "step": 214
1310
+ },
1311
+ {
1312
+ "epoch": 0.49,
1313
+ "learning_rate": 9.064918977152516e-05,
1314
+ "loss": 1.7747,
1315
+ "step": 215
1316
+ },
1317
+ {
1318
+ "epoch": 0.49,
1319
+ "learning_rate": 9.053923098766217e-05,
1320
+ "loss": 1.8065,
1321
+ "step": 216
1322
+ },
1323
+ {
1324
+ "epoch": 0.49,
1325
+ "learning_rate": 9.042869697233046e-05,
1326
+ "loss": 1.821,
1327
+ "step": 217
1328
+ },
1329
+ {
1330
+ "epoch": 0.49,
1331
+ "learning_rate": 9.031758929395258e-05,
1332
+ "loss": 1.718,
1333
+ "step": 218
1334
+ },
1335
+ {
1336
+ "epoch": 0.49,
1337
+ "learning_rate": 9.020590952909105e-05,
1338
+ "loss": 1.6306,
1339
+ "step": 219
1340
+ },
1341
+ {
1342
+ "epoch": 0.5,
1343
+ "learning_rate": 9.009365926242603e-05,
1344
+ "loss": 1.8161,
1345
+ "step": 220
1346
+ },
1347
+ {
1348
+ "epoch": 0.5,
1349
+ "learning_rate": 8.998084008673285e-05,
1350
+ "loss": 1.2547,
1351
+ "step": 221
1352
+ },
1353
+ {
1354
+ "epoch": 0.5,
1355
+ "learning_rate": 8.986745360285932e-05,
1356
+ "loss": 1.5912,
1357
+ "step": 222
1358
+ },
1359
+ {
1360
+ "epoch": 0.5,
1361
+ "learning_rate": 8.975350141970311e-05,
1362
+ "loss": 1.5138,
1363
+ "step": 223
1364
+ },
1365
+ {
1366
+ "epoch": 0.51,
1367
+ "learning_rate": 8.963898515418884e-05,
1368
+ "loss": 1.72,
1369
+ "step": 224
1370
+ },
1371
+ {
1372
+ "epoch": 0.51,
1373
+ "learning_rate": 8.952390643124524e-05,
1374
+ "loss": 1.6342,
1375
+ "step": 225
1376
+ },
1377
+ {
1378
+ "epoch": 0.51,
1379
+ "learning_rate": 8.940826688378197e-05,
1380
+ "loss": 1.6454,
1381
+ "step": 226
1382
+ },
1383
+ {
1384
+ "epoch": 0.51,
1385
+ "learning_rate": 8.929206815266652e-05,
1386
+ "loss": 1.8337,
1387
+ "step": 227
1388
+ },
1389
+ {
1390
+ "epoch": 0.51,
1391
+ "learning_rate": 8.917531188670095e-05,
1392
+ "loss": 1.5335,
1393
+ "step": 228
1394
+ },
1395
+ {
1396
+ "epoch": 0.52,
1397
+ "learning_rate": 8.905799974259845e-05,
1398
+ "loss": 1.77,
1399
+ "step": 229
1400
+ },
1401
+ {
1402
+ "epoch": 0.52,
1403
+ "learning_rate": 8.894013338495981e-05,
1404
+ "loss": 1.6785,
1405
+ "step": 230
1406
+ },
1407
+ {
1408
+ "epoch": 0.52,
1409
+ "learning_rate": 8.882171448624988e-05,
1410
+ "loss": 1.6688,
1411
+ "step": 231
1412
+ },
1413
+ {
1414
+ "epoch": 0.52,
1415
+ "learning_rate": 8.870274472677376e-05,
1416
+ "loss": 1.5964,
1417
+ "step": 232
1418
+ },
1419
+ {
1420
+ "epoch": 0.53,
1421
+ "learning_rate": 8.8583225794653e-05,
1422
+ "loss": 1.7153,
1423
+ "step": 233
1424
+ },
1425
+ {
1426
+ "epoch": 0.53,
1427
+ "learning_rate": 8.846315938580163e-05,
1428
+ "loss": 1.8064,
1429
+ "step": 234
1430
+ },
1431
+ {
1432
+ "epoch": 0.53,
1433
+ "learning_rate": 8.834254720390213e-05,
1434
+ "loss": 1.6305,
1435
+ "step": 235
1436
+ },
1437
+ {
1438
+ "epoch": 0.53,
1439
+ "learning_rate": 8.82213909603812e-05,
1440
+ "loss": 1.5684,
1441
+ "step": 236
1442
+ },
1443
+ {
1444
+ "epoch": 0.54,
1445
+ "learning_rate": 8.809969237438548e-05,
1446
+ "loss": 1.7526,
1447
+ "step": 237
1448
+ },
1449
+ {
1450
+ "epoch": 0.54,
1451
+ "learning_rate": 8.797745317275726e-05,
1452
+ "loss": 1.5233,
1453
+ "step": 238
1454
+ },
1455
+ {
1456
+ "epoch": 0.54,
1457
+ "learning_rate": 8.78546750900098e-05,
1458
+ "loss": 1.2263,
1459
+ "step": 239
1460
+ },
1461
+ {
1462
+ "epoch": 0.54,
1463
+ "learning_rate": 8.773135986830287e-05,
1464
+ "loss": 1.5587,
1465
+ "step": 240
1466
+ },
1467
+ {
1468
+ "epoch": 0.54,
1469
+ "learning_rate": 8.760750925741799e-05,
1470
+ "loss": 1.7591,
1471
+ "step": 241
1472
+ },
1473
+ {
1474
+ "epoch": 0.55,
1475
+ "learning_rate": 8.74831250147335e-05,
1476
+ "loss": 1.708,
1477
+ "step": 242
1478
+ },
1479
+ {
1480
+ "epoch": 0.55,
1481
+ "learning_rate": 8.73582089051998e-05,
1482
+ "loss": 1.5663,
1483
+ "step": 243
1484
+ },
1485
+ {
1486
+ "epoch": 0.55,
1487
+ "learning_rate": 8.723276270131422e-05,
1488
+ "loss": 1.2198,
1489
+ "step": 244
1490
+ },
1491
+ {
1492
+ "epoch": 0.55,
1493
+ "learning_rate": 8.710678818309576e-05,
1494
+ "loss": 1.5559,
1495
+ "step": 245
1496
+ },
1497
+ {
1498
+ "epoch": 0.56,
1499
+ "learning_rate": 8.698028713806004e-05,
1500
+ "loss": 1.5615,
1501
+ "step": 246
1502
+ },
1503
+ {
1504
+ "epoch": 0.56,
1505
+ "learning_rate": 8.68532613611938e-05,
1506
+ "loss": 1.8736,
1507
+ "step": 247
1508
+ },
1509
+ {
1510
+ "epoch": 0.56,
1511
+ "learning_rate": 8.672571265492943e-05,
1512
+ "loss": 1.802,
1513
+ "step": 248
1514
+ },
1515
+ {
1516
+ "epoch": 0.56,
1517
+ "learning_rate": 8.659764282911948e-05,
1518
+ "loss": 1.8928,
1519
+ "step": 249
1520
+ },
1521
+ {
1522
+ "epoch": 0.56,
1523
+ "learning_rate": 8.646905370101091e-05,
1524
+ "loss": 1.7009,
1525
+ "step": 250
1526
+ },
1527
+ {
1528
+ "epoch": 0.57,
1529
+ "learning_rate": 8.63399470952193e-05,
1530
+ "loss": 1.4649,
1531
+ "step": 251
1532
+ },
1533
+ {
1534
+ "epoch": 0.57,
1535
+ "learning_rate": 8.621032484370299e-05,
1536
+ "loss": 1.5459,
1537
+ "step": 252
1538
+ },
1539
+ {
1540
+ "epoch": 0.57,
1541
+ "learning_rate": 8.608018878573709e-05,
1542
+ "loss": 1.7053,
1543
+ "step": 253
1544
+ },
1545
+ {
1546
+ "epoch": 0.57,
1547
+ "learning_rate": 8.594954076788736e-05,
1548
+ "loss": 1.6225,
1549
+ "step": 254
1550
+ },
1551
+ {
1552
+ "epoch": 0.58,
1553
+ "learning_rate": 8.581838264398401e-05,
1554
+ "loss": 1.6186,
1555
+ "step": 255
1556
+ },
1557
+ {
1558
+ "epoch": 0.58,
1559
+ "learning_rate": 8.56867162750954e-05,
1560
+ "loss": 1.5048,
1561
+ "step": 256
1562
+ },
1563
+ {
1564
+ "epoch": 0.58,
1565
+ "learning_rate": 8.555454352950161e-05,
1566
+ "loss": 1.6085,
1567
+ "step": 257
1568
+ },
1569
+ {
1570
+ "epoch": 0.58,
1571
+ "learning_rate": 8.542186628266802e-05,
1572
+ "loss": 1.6226,
1573
+ "step": 258
1574
+ },
1575
+ {
1576
+ "epoch": 0.58,
1577
+ "learning_rate": 8.528868641721857e-05,
1578
+ "loss": 1.8184,
1579
+ "step": 259
1580
+ },
1581
+ {
1582
+ "epoch": 0.59,
1583
+ "learning_rate": 8.515500582290914e-05,
1584
+ "loss": 1.4474,
1585
+ "step": 260
1586
+ },
1587
+ {
1588
+ "epoch": 0.59,
1589
+ "learning_rate": 8.502082639660067e-05,
1590
+ "loss": 1.8168,
1591
+ "step": 261
1592
+ },
1593
+ {
1594
+ "epoch": 0.59,
1595
+ "learning_rate": 8.488615004223233e-05,
1596
+ "loss": 1.5756,
1597
+ "step": 262
1598
+ },
1599
+ {
1600
+ "epoch": 0.59,
1601
+ "learning_rate": 8.475097867079436e-05,
1602
+ "loss": 1.6404,
1603
+ "step": 263
1604
+ },
1605
+ {
1606
+ "epoch": 0.6,
1607
+ "learning_rate": 8.461531420030117e-05,
1608
+ "loss": 1.6272,
1609
+ "step": 264
1610
+ },
1611
+ {
1612
+ "epoch": 0.6,
1613
+ "learning_rate": 8.44791585557639e-05,
1614
+ "loss": 1.6069,
1615
+ "step": 265
1616
+ },
1617
+ {
1618
+ "epoch": 0.6,
1619
+ "learning_rate": 8.434251366916322e-05,
1620
+ "loss": 1.7389,
1621
+ "step": 266
1622
+ },
1623
+ {
1624
+ "epoch": 0.6,
1625
+ "learning_rate": 8.420538147942197e-05,
1626
+ "loss": 1.4526,
1627
+ "step": 267
1628
+ },
1629
+ {
1630
+ "epoch": 0.61,
1631
+ "learning_rate": 8.406776393237747e-05,
1632
+ "loss": 1.395,
1633
+ "step": 268
1634
+ },
1635
+ {
1636
+ "epoch": 0.61,
1637
+ "learning_rate": 8.392966298075413e-05,
1638
+ "loss": 1.5559,
1639
+ "step": 269
1640
+ },
1641
+ {
1642
+ "epoch": 0.61,
1643
+ "learning_rate": 8.379108058413553e-05,
1644
+ "loss": 1.5938,
1645
+ "step": 270
1646
+ },
1647
+ {
1648
+ "epoch": 0.61,
1649
+ "learning_rate": 8.365201870893679e-05,
1650
+ "loss": 1.5633,
1651
+ "step": 271
1652
+ },
1653
+ {
1654
+ "epoch": 0.61,
1655
+ "learning_rate": 8.351247932837655e-05,
1656
+ "loss": 1.6534,
1657
+ "step": 272
1658
+ },
1659
+ {
1660
+ "epoch": 0.62,
1661
+ "learning_rate": 8.337246442244901e-05,
1662
+ "loss": 1.5687,
1663
+ "step": 273
1664
+ },
1665
+ {
1666
+ "epoch": 0.62,
1667
+ "learning_rate": 8.323197597789589e-05,
1668
+ "loss": 1.5531,
1669
+ "step": 274
1670
+ },
1671
+ {
1672
+ "epoch": 0.62,
1673
+ "learning_rate": 8.309101598817813e-05,
1674
+ "loss": 1.4546,
1675
+ "step": 275
1676
+ },
1677
+ {
1678
+ "epoch": 0.62,
1679
+ "learning_rate": 8.294958645344766e-05,
1680
+ "loss": 1.5684,
1681
+ "step": 276
1682
+ },
1683
+ {
1684
+ "epoch": 0.63,
1685
+ "learning_rate": 8.280768938051908e-05,
1686
+ "loss": 1.7263,
1687
+ "step": 277
1688
+ },
1689
+ {
1690
+ "epoch": 0.63,
1691
+ "learning_rate": 8.266532678284103e-05,
1692
+ "loss": 1.7123,
1693
+ "step": 278
1694
+ },
1695
+ {
1696
+ "epoch": 0.63,
1697
+ "learning_rate": 8.252250068046782e-05,
1698
+ "loss": 1.5563,
1699
+ "step": 279
1700
+ },
1701
+ {
1702
+ "epoch": 0.63,
1703
+ "learning_rate": 8.237921310003059e-05,
1704
+ "loss": 1.5035,
1705
+ "step": 280
1706
+ },
1707
+ {
1708
+ "epoch": 0.63,
1709
+ "learning_rate": 8.223546607470863e-05,
1710
+ "loss": 1.5747,
1711
+ "step": 281
1712
+ },
1713
+ {
1714
+ "epoch": 0.64,
1715
+ "learning_rate": 8.209126164420055e-05,
1716
+ "loss": 1.6334,
1717
+ "step": 282
1718
+ },
1719
+ {
1720
+ "epoch": 0.64,
1721
+ "learning_rate": 8.194660185469529e-05,
1722
+ "loss": 1.5158,
1723
+ "step": 283
1724
+ },
1725
+ {
1726
+ "epoch": 0.64,
1727
+ "learning_rate": 8.18014887588431e-05,
1728
+ "loss": 1.4902,
1729
+ "step": 284
1730
+ },
1731
+ {
1732
+ "epoch": 0.64,
1733
+ "learning_rate": 8.165592441572647e-05,
1734
+ "loss": 1.7115,
1735
+ "step": 285
1736
+ },
1737
+ {
1738
+ "epoch": 0.65,
1739
+ "learning_rate": 8.15099108908308e-05,
1740
+ "loss": 1.7038,
1741
+ "step": 286
1742
+ },
1743
+ {
1744
+ "epoch": 0.65,
1745
+ "learning_rate": 8.13634502560152e-05,
1746
+ "loss": 1.5703,
1747
+ "step": 287
1748
+ },
1749
+ {
1750
+ "epoch": 0.65,
1751
+ "learning_rate": 8.1216544589483e-05,
1752
+ "loss": 1.61,
1753
+ "step": 288
1754
+ },
1755
+ {
1756
+ "epoch": 0.65,
1757
+ "learning_rate": 8.106919597575238e-05,
1758
+ "loss": 1.7725,
1759
+ "step": 289
1760
+ },
1761
+ {
1762
+ "epoch": 0.65,
1763
+ "learning_rate": 8.092140650562665e-05,
1764
+ "loss": 1.6933,
1765
+ "step": 290
1766
+ },
1767
+ {
1768
+ "epoch": 0.66,
1769
+ "learning_rate": 8.07731782761647e-05,
1770
+ "loss": 1.4752,
1771
+ "step": 291
1772
+ },
1773
+ {
1774
+ "epoch": 0.66,
1775
+ "learning_rate": 8.062451339065115e-05,
1776
+ "loss": 1.3992,
1777
+ "step": 292
1778
+ },
1779
+ {
1780
+ "epoch": 0.66,
1781
+ "learning_rate": 8.047541395856661e-05,
1782
+ "loss": 1.5156,
1783
+ "step": 293
1784
+ },
1785
+ {
1786
+ "epoch": 0.66,
1787
+ "learning_rate": 8.032588209555765e-05,
1788
+ "loss": 1.6108,
1789
+ "step": 294
1790
+ },
1791
+ {
1792
+ "epoch": 0.67,
1793
+ "learning_rate": 8.01759199234068e-05,
1794
+ "loss": 1.633,
1795
+ "step": 295
1796
+ },
1797
+ {
1798
+ "epoch": 0.67,
1799
+ "learning_rate": 8.002552957000254e-05,
1800
+ "loss": 1.6842,
1801
+ "step": 296
1802
+ },
1803
+ {
1804
+ "epoch": 0.67,
1805
+ "learning_rate": 7.987471316930893e-05,
1806
+ "loss": 1.5822,
1807
+ "step": 297
1808
+ },
1809
+ {
1810
+ "epoch": 0.67,
1811
+ "learning_rate": 7.972347286133548e-05,
1812
+ "loss": 1.5932,
1813
+ "step": 298
1814
+ },
1815
+ {
1816
+ "epoch": 0.68,
1817
+ "learning_rate": 7.957181079210675e-05,
1818
+ "loss": 1.7149,
1819
+ "step": 299
1820
+ },
1821
+ {
1822
+ "epoch": 0.68,
1823
+ "learning_rate": 7.941972911363186e-05,
1824
+ "loss": 1.5916,
1825
+ "step": 300
1826
+ },
1827
+ {
1828
+ "epoch": 0.68,
1829
+ "eval_loss": 1.6114922761917114,
1830
+ "eval_runtime": 379.6975,
1831
+ "eval_samples_per_second": 1.438,
1832
+ "eval_steps_per_second": 0.719,
1833
+ "step": 300
1834
+ },
1835
+ {
1836
+ "epoch": 0.68,
1837
+ "learning_rate": 7.926722998387397e-05,
1838
+ "loss": 1.5477,
1839
+ "step": 301
1840
+ },
1841
+ {
1842
+ "epoch": 0.68,
1843
+ "learning_rate": 7.911431556671968e-05,
1844
+ "loss": 1.4926,
1845
+ "step": 302
1846
+ },
1847
+ {
1848
+ "epoch": 0.68,
1849
+ "learning_rate": 7.896098803194828e-05,
1850
+ "loss": 1.7314,
1851
+ "step": 303
1852
+ },
1853
+ {
1854
+ "epoch": 0.69,
1855
+ "learning_rate": 7.880724955520104e-05,
1856
+ "loss": 1.7405,
1857
+ "step": 304
1858
+ },
1859
+ {
1860
+ "epoch": 0.69,
1861
+ "learning_rate": 7.865310231795026e-05,
1862
+ "loss": 1.7367,
1863
+ "step": 305
1864
+ },
1865
+ {
1866
+ "epoch": 0.69,
1867
+ "learning_rate": 7.849854850746833e-05,
1868
+ "loss": 1.7337,
1869
+ "step": 306
1870
+ },
1871
+ {
1872
+ "epoch": 0.69,
1873
+ "learning_rate": 7.834359031679679e-05,
1874
+ "loss": 1.7436,
1875
+ "step": 307
1876
+ },
1877
+ {
1878
+ "epoch": 0.7,
1879
+ "learning_rate": 7.818822994471505e-05,
1880
+ "loss": 1.8298,
1881
+ "step": 308
1882
+ },
1883
+ {
1884
+ "epoch": 0.7,
1885
+ "learning_rate": 7.803246959570928e-05,
1886
+ "loss": 1.8664,
1887
+ "step": 309
1888
+ },
1889
+ {
1890
+ "epoch": 0.7,
1891
+ "learning_rate": 7.78763114799412e-05,
1892
+ "loss": 1.7184,
1893
+ "step": 310
1894
+ },
1895
+ {
1896
+ "epoch": 0.7,
1897
+ "learning_rate": 7.771975781321655e-05,
1898
+ "loss": 1.2468,
1899
+ "step": 311
1900
+ },
1901
+ {
1902
+ "epoch": 0.7,
1903
+ "learning_rate": 7.75628108169538e-05,
1904
+ "loss": 1.6385,
1905
+ "step": 312
1906
+ },
1907
+ {
1908
+ "epoch": 0.71,
1909
+ "learning_rate": 7.740547271815253e-05,
1910
+ "loss": 1.4619,
1911
+ "step": 313
1912
+ },
1913
+ {
1914
+ "epoch": 0.71,
1915
+ "learning_rate": 7.724774574936188e-05,
1916
+ "loss": 1.5747,
1917
+ "step": 314
1918
+ },
1919
+ {
1920
+ "epoch": 0.71,
1921
+ "learning_rate": 7.70896321486489e-05,
1922
+ "loss": 1.5747,
1923
+ "step": 315
1924
+ },
1925
+ {
1926
+ "epoch": 0.71,
1927
+ "learning_rate": 7.693113415956674e-05,
1928
+ "loss": 1.6532,
1929
+ "step": 316
1930
+ },
1931
+ {
1932
+ "epoch": 0.72,
1933
+ "learning_rate": 7.677225403112276e-05,
1934
+ "loss": 1.7604,
1935
+ "step": 317
1936
+ },
1937
+ {
1938
+ "epoch": 0.72,
1939
+ "learning_rate": 7.661299401774678e-05,
1940
+ "loss": 1.7972,
1941
+ "step": 318
1942
+ },
1943
+ {
1944
+ "epoch": 0.72,
1945
+ "learning_rate": 7.645335637925896e-05,
1946
+ "loss": 1.3371,
1947
+ "step": 319
1948
+ },
1949
+ {
1950
+ "epoch": 0.72,
1951
+ "learning_rate": 7.629334338083773e-05,
1952
+ "loss": 1.7056,
1953
+ "step": 320
1954
+ },
1955
+ {
1956
+ "epoch": 0.73,
1957
+ "learning_rate": 7.61329572929878e-05,
1958
+ "loss": 1.7155,
1959
+ "step": 321
1960
+ },
1961
+ {
1962
+ "epoch": 0.73,
1963
+ "learning_rate": 7.597220039150768e-05,
1964
+ "loss": 1.6125,
1965
+ "step": 322
1966
+ },
1967
+ {
1968
+ "epoch": 0.73,
1969
+ "learning_rate": 7.581107495745769e-05,
1970
+ "loss": 1.5879,
1971
+ "step": 323
1972
+ },
1973
+ {
1974
+ "epoch": 0.73,
1975
+ "learning_rate": 7.564958327712734e-05,
1976
+ "loss": 1.639,
1977
+ "step": 324
1978
+ },
1979
+ {
1980
+ "epoch": 0.73,
1981
+ "learning_rate": 7.548772764200307e-05,
1982
+ "loss": 1.7122,
1983
+ "step": 325
1984
+ },
1985
+ {
1986
+ "epoch": 0.74,
1987
+ "learning_rate": 7.532551034873559e-05,
1988
+ "loss": 1.7528,
1989
+ "step": 326
1990
+ },
1991
+ {
1992
+ "epoch": 0.74,
1993
+ "learning_rate": 7.516293369910737e-05,
1994
+ "loss": 1.5804,
1995
+ "step": 327
1996
+ },
1997
+ {
1998
+ "epoch": 0.74,
1999
+ "learning_rate": 7.500000000000001e-05,
2000
+ "loss": 1.7145,
2001
+ "step": 328
2002
+ },
2003
+ {
2004
+ "epoch": 0.74,
2005
+ "learning_rate": 7.483671156336141e-05,
2006
+ "loss": 1.5839,
2007
+ "step": 329
2008
+ },
2009
+ {
2010
+ "epoch": 0.75,
2011
+ "learning_rate": 7.467307070617309e-05,
2012
+ "loss": 1.8584,
2013
+ "step": 330
2014
+ },
2015
+ {
2016
+ "epoch": 0.75,
2017
+ "learning_rate": 7.450907975041715e-05,
2018
+ "loss": 1.4994,
2019
+ "step": 331
2020
+ },
2021
+ {
2022
+ "epoch": 0.75,
2023
+ "learning_rate": 7.43447410230435e-05,
2024
+ "loss": 1.3246,
2025
+ "step": 332
2026
+ },
2027
+ {
2028
+ "epoch": 0.75,
2029
+ "learning_rate": 7.418005685593669e-05,
2030
+ "loss": 1.6393,
2031
+ "step": 333
2032
+ },
2033
+ {
2034
+ "epoch": 0.75,
2035
+ "learning_rate": 7.401502958588293e-05,
2036
+ "loss": 1.5387,
2037
+ "step": 334
2038
+ },
2039
+ {
2040
+ "epoch": 0.76,
2041
+ "learning_rate": 7.384966155453685e-05,
2042
+ "loss": 1.3346,
2043
+ "step": 335
2044
+ },
2045
+ {
2046
+ "epoch": 0.76,
2047
+ "learning_rate": 7.368395510838838e-05,
2048
+ "loss": 1.318,
2049
+ "step": 336
2050
+ },
2051
+ {
2052
+ "epoch": 0.76,
2053
+ "learning_rate": 7.351791259872929e-05,
2054
+ "loss": 1.7234,
2055
+ "step": 337
2056
+ },
2057
+ {
2058
+ "epoch": 0.76,
2059
+ "learning_rate": 7.335153638162005e-05,
2060
+ "loss": 1.5846,
2061
+ "step": 338
2062
+ },
2063
+ {
2064
+ "epoch": 0.77,
2065
+ "learning_rate": 7.318482881785613e-05,
2066
+ "loss": 1.4967,
2067
+ "step": 339
2068
+ },
2069
+ {
2070
+ "epoch": 0.77,
2071
+ "learning_rate": 7.301779227293475e-05,
2072
+ "loss": 1.6795,
2073
+ "step": 340
2074
+ },
2075
+ {
2076
+ "epoch": 0.77,
2077
+ "learning_rate": 7.285042911702115e-05,
2078
+ "loss": 1.466,
2079
+ "step": 341
2080
+ },
2081
+ {
2082
+ "epoch": 0.77,
2083
+ "learning_rate": 7.268274172491508e-05,
2084
+ "loss": 1.9118,
2085
+ "step": 342
2086
+ },
2087
+ {
2088
+ "epoch": 0.77,
2089
+ "learning_rate": 7.251473247601698e-05,
2090
+ "loss": 1.5324,
2091
+ "step": 343
2092
+ },
2093
+ {
2094
+ "epoch": 0.78,
2095
+ "learning_rate": 7.234640375429427e-05,
2096
+ "loss": 1.637,
2097
+ "step": 344
2098
+ },
2099
+ {
2100
+ "epoch": 0.78,
2101
+ "learning_rate": 7.217775794824759e-05,
2102
+ "loss": 1.6558,
2103
+ "step": 345
2104
+ },
2105
+ {
2106
+ "epoch": 0.78,
2107
+ "learning_rate": 7.200879745087681e-05,
2108
+ "loss": 1.6324,
2109
+ "step": 346
2110
+ },
2111
+ {
2112
+ "epoch": 0.78,
2113
+ "learning_rate": 7.183952465964711e-05,
2114
+ "loss": 1.7496,
2115
+ "step": 347
2116
+ },
2117
+ {
2118
+ "epoch": 0.79,
2119
+ "learning_rate": 7.166994197645496e-05,
2120
+ "loss": 1.7385,
2121
+ "step": 348
2122
+ },
2123
+ {
2124
+ "epoch": 0.79,
2125
+ "learning_rate": 7.15000518075941e-05,
2126
+ "loss": 1.6461,
2127
+ "step": 349
2128
+ },
2129
+ {
2130
+ "epoch": 0.79,
2131
+ "learning_rate": 7.132985656372126e-05,
2132
+ "loss": 1.7131,
2133
+ "step": 350
2134
+ },
2135
+ {
2136
+ "epoch": 0.79,
2137
+ "learning_rate": 7.115935865982206e-05,
2138
+ "loss": 1.6787,
2139
+ "step": 351
2140
+ },
2141
+ {
2142
+ "epoch": 0.8,
2143
+ "learning_rate": 7.098856051517673e-05,
2144
+ "loss": 1.6028,
2145
+ "step": 352
2146
+ },
2147
+ {
2148
+ "epoch": 0.8,
2149
+ "learning_rate": 7.081746455332576e-05,
2150
+ "loss": 1.4347,
2151
+ "step": 353
2152
+ },
2153
+ {
2154
+ "epoch": 0.8,
2155
+ "learning_rate": 7.064607320203551e-05,
2156
+ "loss": 1.5735,
2157
+ "step": 354
2158
+ },
2159
+ {
2160
+ "epoch": 0.8,
2161
+ "learning_rate": 7.047438889326376e-05,
2162
+ "loss": 1.2504,
2163
+ "step": 355
2164
+ },
2165
+ {
2166
+ "epoch": 0.8,
2167
+ "learning_rate": 7.030241406312528e-05,
2168
+ "loss": 1.9139,
2169
+ "step": 356
2170
+ },
2171
+ {
2172
+ "epoch": 0.81,
2173
+ "learning_rate": 7.013015115185706e-05,
2174
+ "loss": 1.5579,
2175
+ "step": 357
2176
+ },
2177
+ {
2178
+ "epoch": 0.81,
2179
+ "learning_rate": 6.995760260378395e-05,
2180
+ "loss": 1.6616,
2181
+ "step": 358
2182
+ },
2183
+ {
2184
+ "epoch": 0.81,
2185
+ "learning_rate": 6.978477086728374e-05,
2186
+ "loss": 1.7095,
2187
+ "step": 359
2188
+ },
2189
+ {
2190
+ "epoch": 0.81,
2191
+ "learning_rate": 6.961165839475263e-05,
2192
+ "loss": 1.8251,
2193
+ "step": 360
2194
+ },
2195
+ {
2196
+ "epoch": 0.82,
2197
+ "learning_rate": 6.943826764257021e-05,
2198
+ "loss": 1.5992,
2199
+ "step": 361
2200
+ },
2201
+ {
2202
+ "epoch": 0.82,
2203
+ "learning_rate": 6.926460107106482e-05,
2204
+ "loss": 1.712,
2205
+ "step": 362
2206
+ },
2207
+ {
2208
+ "epoch": 0.82,
2209
+ "learning_rate": 6.909066114447847e-05,
2210
+ "loss": 1.6707,
2211
+ "step": 363
2212
+ },
2213
+ {
2214
+ "epoch": 0.82,
2215
+ "learning_rate": 6.891645033093196e-05,
2216
+ "loss": 1.4995,
2217
+ "step": 364
2218
+ },
2219
+ {
2220
+ "epoch": 0.82,
2221
+ "learning_rate": 6.874197110238985e-05,
2222
+ "loss": 1.666,
2223
+ "step": 365
2224
+ },
2225
+ {
2226
+ "epoch": 0.83,
2227
+ "learning_rate": 6.856722593462537e-05,
2228
+ "loss": 1.5461,
2229
+ "step": 366
2230
+ },
2231
+ {
2232
+ "epoch": 0.83,
2233
+ "learning_rate": 6.839221730718533e-05,
2234
+ "loss": 1.5381,
2235
+ "step": 367
2236
+ },
2237
+ {
2238
+ "epoch": 0.83,
2239
+ "learning_rate": 6.821694770335481e-05,
2240
+ "loss": 1.7022,
2241
+ "step": 368
2242
+ },
2243
+ {
2244
+ "epoch": 0.83,
2245
+ "learning_rate": 6.804141961012213e-05,
2246
+ "loss": 1.5809,
2247
+ "step": 369
2248
+ },
2249
+ {
2250
+ "epoch": 0.84,
2251
+ "learning_rate": 6.786563551814333e-05,
2252
+ "loss": 1.8404,
2253
+ "step": 370
2254
+ },
2255
+ {
2256
+ "epoch": 0.84,
2257
+ "learning_rate": 6.768959792170706e-05,
2258
+ "loss": 1.8898,
2259
+ "step": 371
2260
+ },
2261
+ {
2262
+ "epoch": 0.84,
2263
+ "learning_rate": 6.751330931869897e-05,
2264
+ "loss": 1.5612,
2265
+ "step": 372
2266
+ },
2267
+ {
2268
+ "epoch": 0.84,
2269
+ "learning_rate": 6.733677221056644e-05,
2270
+ "loss": 1.5037,
2271
+ "step": 373
2272
+ },
2273
+ {
2274
+ "epoch": 0.84,
2275
+ "learning_rate": 6.715998910228296e-05,
2276
+ "loss": 1.5153,
2277
+ "step": 374
2278
+ },
2279
+ {
2280
+ "epoch": 0.85,
2281
+ "learning_rate": 6.69829625023127e-05,
2282
+ "loss": 1.6037,
2283
+ "step": 375
2284
+ },
2285
+ {
2286
+ "epoch": 0.85,
2287
+ "learning_rate": 6.68056949225748e-05,
2288
+ "loss": 1.2321,
2289
+ "step": 376
2290
+ },
2291
+ {
2292
+ "epoch": 0.85,
2293
+ "learning_rate": 6.66281888784078e-05,
2294
+ "loss": 1.6523,
2295
+ "step": 377
2296
+ },
2297
+ {
2298
+ "epoch": 0.85,
2299
+ "learning_rate": 6.645044688853395e-05,
2300
+ "loss": 1.443,
2301
+ "step": 378
2302
+ },
2303
+ {
2304
+ "epoch": 0.86,
2305
+ "learning_rate": 6.627247147502343e-05,
2306
+ "loss": 1.775,
2307
+ "step": 379
2308
+ },
2309
+ {
2310
+ "epoch": 0.86,
2311
+ "learning_rate": 6.60942651632586e-05,
2312
+ "loss": 1.5969,
2313
+ "step": 380
2314
+ },
2315
+ {
2316
+ "epoch": 0.86,
2317
+ "learning_rate": 6.591583048189812e-05,
2318
+ "loss": 1.5039,
2319
+ "step": 381
2320
+ },
2321
+ {
2322
+ "epoch": 0.86,
2323
+ "learning_rate": 6.573716996284113e-05,
2324
+ "loss": 1.6205,
2325
+ "step": 382
2326
+ },
2327
+ {
2328
+ "epoch": 0.87,
2329
+ "learning_rate": 6.555828614119132e-05,
2330
+ "loss": 1.4704,
2331
+ "step": 383
2332
+ },
2333
+ {
2334
+ "epoch": 0.87,
2335
+ "learning_rate": 6.537918155522087e-05,
2336
+ "loss": 1.5824,
2337
+ "step": 384
2338
+ },
2339
+ {
2340
+ "epoch": 0.87,
2341
+ "learning_rate": 6.519985874633454e-05,
2342
+ "loss": 1.5881,
2343
+ "step": 385
2344
+ },
2345
+ {
2346
+ "epoch": 0.87,
2347
+ "learning_rate": 6.502032025903355e-05,
2348
+ "loss": 1.5599,
2349
+ "step": 386
2350
+ },
2351
+ {
2352
+ "epoch": 0.87,
2353
+ "learning_rate": 6.484056864087947e-05,
2354
+ "loss": 1.6519,
2355
+ "step": 387
2356
+ },
2357
+ {
2358
+ "epoch": 0.88,
2359
+ "learning_rate": 6.466060644245815e-05,
2360
+ "loss": 1.6166,
2361
+ "step": 388
2362
+ },
2363
+ {
2364
+ "epoch": 0.88,
2365
+ "learning_rate": 6.448043621734337e-05,
2366
+ "loss": 1.6451,
2367
+ "step": 389
2368
+ },
2369
+ {
2370
+ "epoch": 0.88,
2371
+ "learning_rate": 6.430006052206082e-05,
2372
+ "loss": 1.7321,
2373
+ "step": 390
2374
+ },
2375
+ {
2376
+ "epoch": 0.88,
2377
+ "learning_rate": 6.411948191605163e-05,
2378
+ "loss": 1.6647,
2379
+ "step": 391
2380
+ },
2381
+ {
2382
+ "epoch": 0.89,
2383
+ "learning_rate": 6.393870296163615e-05,
2384
+ "loss": 1.2297,
2385
+ "step": 392
2386
+ },
2387
+ {
2388
+ "epoch": 0.89,
2389
+ "learning_rate": 6.375772622397761e-05,
2390
+ "loss": 1.6895,
2391
+ "step": 393
2392
+ },
2393
+ {
2394
+ "epoch": 0.89,
2395
+ "learning_rate": 6.357655427104562e-05,
2396
+ "loss": 1.5156,
2397
+ "step": 394
2398
+ },
2399
+ {
2400
+ "epoch": 0.89,
2401
+ "learning_rate": 6.339518967357985e-05,
2402
+ "loss": 1.4977,
2403
+ "step": 395
2404
+ },
2405
+ {
2406
+ "epoch": 0.89,
2407
+ "learning_rate": 6.321363500505347e-05,
2408
+ "loss": 1.5753,
2409
+ "step": 396
2410
+ },
2411
+ {
2412
+ "epoch": 0.9,
2413
+ "learning_rate": 6.303189284163668e-05,
2414
+ "loss": 1.6325,
2415
+ "step": 397
2416
+ },
2417
+ {
2418
+ "epoch": 0.9,
2419
+ "learning_rate": 6.284996576216014e-05,
2420
+ "loss": 1.6534,
2421
+ "step": 398
2422
+ },
2423
+ {
2424
+ "epoch": 0.9,
2425
+ "learning_rate": 6.266785634807837e-05,
2426
+ "loss": 1.6973,
2427
+ "step": 399
2428
+ },
2429
+ {
2430
+ "epoch": 0.9,
2431
+ "learning_rate": 6.248556718343314e-05,
2432
+ "loss": 1.3587,
2433
+ "step": 400
2434
+ },
2435
+ {
2436
+ "epoch": 0.9,
2437
+ "eval_loss": 1.6087621450424194,
2438
+ "eval_runtime": 379.6023,
2439
+ "eval_samples_per_second": 1.438,
2440
+ "eval_steps_per_second": 0.719,
2441
+ "step": 400
2442
+ }
2443
+ ],
2444
+ "logging_steps": 1,
2445
+ "max_steps": 884,
2446
+ "num_train_epochs": 2,
2447
+ "save_steps": 100,
2448
+ "total_flos": 1.020569592004608e+18,
2449
+ "trial_name": null,
2450
+ "trial_params": null
2451
+ }
checkpoint-400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d56fbe111de73ce9d78c5e0425f7afd4ffcc72eb08a33eb2194e62b1a0c9af3f
3
+ size 4539
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/Orca-2-13b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 32002,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 13824,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 40,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "quantization_config": {
21
+ "bnb_4bit_compute_dtype": "bfloat16",
22
+ "bnb_4bit_quant_type": "nf4",
23
+ "bnb_4bit_use_double_quant": true,
24
+ "llm_int8_enable_fp32_cpu_offload": false,
25
+ "llm_int8_has_fp16_weight": false,
26
+ "llm_int8_skip_modules": null,
27
+ "llm_int8_threshold": 6.0,
28
+ "load_in_4bit": true,
29
+ "load_in_8bit": false,
30
+ "quant_method": "bitsandbytes"
31
+ },
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 10000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "float32",
37
+ "transformers_version": "4.35.1",
38
+ "use_cache": false,
39
+ "vocab_size": 32003
40
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|im_start|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "32002": {
46
+ "content": "<|im_end|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ }
53
+ },
54
+ "bos_token": "<s>",
55
+ "clean_up_tokenization_spaces": false,
56
+ "eos_token": "<|im_end|>",
57
+ "legacy": false,
58
+ "model_max_length": 4096,
59
+ "pad_token": "[PAD]",
60
+ "padding_side": "right",
61
+ "sp_model_kwargs": {},
62
+ "spaces_between_special_tokens": false,
63
+ "tokenizer_class": "LlamaTokenizer",
64
+ "trust_remote_code": false,
65
+ "unk_token": "<unk>",
66
+ "use_default_system_prompt": true,
67
+ "use_fast": true
68
+ }