openvino_resnet50 / openvino_model.xml
Charles95's picture
Upload folder using huggingface_hub
4fe3468 verified
raw
history blame
156 kB
<?xml version="1.0"?>
<net name="Model0" version="11">
<layers>
<layer id="0" name="pixel_values" type="Parameter" version="opset1">
<data shape="?,?,?,?" element_type="f32" />
<output>
<port id="0" precision="FP32" names="pixel_values">
<dim>-1</dim>
<dim>-1</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="1" name="Multiply_8916" type="Const" version="opset1">
<data element_type="f32" shape="64, 3, 7, 7" offset="0" size="37632" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>3</dim>
<dim>7</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="2" name="Multiply_8543" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="3, 3" pads_end="3, 3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>3</dim>
<dim>7</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="3" name="Constant_8548" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="37632" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="__module.resnet.embedder.embedder.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="34">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="5" name="__module.resnet.embedder.embedder.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="35">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="6" name="__module.resnet.embedder.pooler/aten::max_pool2d/MaxPool" type="MaxPool" version="opset8">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" kernel="3, 3" rounding_type="floor" auto_pad="explicit" index_element_type="i64" axis="2" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="40">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="2" precision="I64">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="7" name="Multiply_8920" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 1, 1" offset="37888" size="16384" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="8" name="Multiply_8550" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="9" name="Constant_8555" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="54272" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="10" name="__module.resnet.encoder.stages.0.layers.0.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="74">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="11" name="__module.resnet.encoder.stages.0.layers.0.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="75">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="12" name="Multiply_8924" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3, 3" offset="54528" size="147456" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="13" name="Multiply_8557" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="14" name="Constant_8562" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="201984" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="15" name="__module.resnet.encoder.stages.0.layers.0.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="89">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="16" name="__module.resnet.encoder.stages.0.layers.0.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="90">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="17" name="Multiply_8928" type="Const" version="opset1">
<data element_type="f32" shape="256, 64, 1, 1" offset="202240" size="65536" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="18" name="Multiply_8564" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="19" name="Constant_8569" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="267776" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="20" name="__module.resnet.encoder.stages.0.layers.0.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="104_1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="21" name="Multiply_8932" type="Const" version="opset1">
<data element_type="f32" shape="256, 64, 1, 1" offset="268800" size="65536" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="22" name="Multiply_8571" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="23" name="Constant_8576" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="334336" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="24" name="__module.resnet.encoder.stages.0.layers.0.shortcut.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="117,residual.1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="25" name="__module.resnet.encoder.stages.0.layers.0/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="104,hidden_state.1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="26" name="__module.resnet.encoder.stages.0.layers.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="119,residual.3">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="27" name="Multiply_8936" type="Const" version="opset1">
<data element_type="f32" shape="64, 256, 1, 1" offset="335360" size="65536" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="28" name="Multiply_8578" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="29" name="Constant_8583" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="400896" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="30" name="__module.resnet.encoder.stages.0.layers.1.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="139">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="31" name="__module.resnet.encoder.stages.0.layers.1.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="140">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="32" name="Multiply_8940" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3, 3" offset="401152" size="147456" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="33" name="Multiply_8585" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="34" name="Constant_8590" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="548608" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="35" name="__module.resnet.encoder.stages.0.layers.1.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="154">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="36" name="__module.resnet.encoder.stages.0.layers.1.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="155">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="37" name="Multiply_8944" type="Const" version="opset1">
<data element_type="f32" shape="256, 64, 1, 1" offset="548864" size="65536" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="38" name="Multiply_8592" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="39" name="Constant_8597" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="614400" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="40" name="__module.resnet.encoder.stages.0.layers.1.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="169_1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="41" name="__module.resnet.encoder.stages.0.layers.1/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="169,hidden_state.3">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="42" name="__module.resnet.encoder.stages.0.layers.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="171,residual.5">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="43" name="Multiply_8948" type="Const" version="opset1">
<data element_type="f32" shape="64, 256, 1, 1" offset="615424" size="65536" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="44" name="Multiply_8599" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="45" name="Constant_8604" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="680960" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="46" name="__module.resnet.encoder.stages.0.layers.2.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="191">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="47" name="__module.resnet.encoder.stages.0.layers.2.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="192">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="48" name="Multiply_8952" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3, 3" offset="681216" size="147456" />
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="49" name="Multiply_8606" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="50" name="Constant_8611" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="828672" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="51" name="__module.resnet.encoder.stages.0.layers.2.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="206">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="52" name="__module.resnet.encoder.stages.0.layers.2.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="207">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="53" name="Multiply_8956" type="Const" version="opset1">
<data element_type="f32" shape="256, 64, 1, 1" offset="828928" size="65536" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="54" name="Multiply_8613" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="55" name="Constant_8618" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="894464" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="56" name="__module.resnet.encoder.stages.0.layers.2.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="221_1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="57" name="__module.resnet.encoder.stages.0.layers.2/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="221,hidden_state.5">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="58" name="__module.resnet.encoder.stages.0.layers.2.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="223">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="59" name="Multiply_8960" type="Const" version="opset1">
<data element_type="f32" shape="128, 256, 1, 1" offset="895488" size="131072" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="60" name="Multiply_8620" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="61" name="Constant_8625" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="1026560" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="62" name="__module.resnet.encoder.stages.1.layers.0.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="251">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="63" name="__module.resnet.encoder.stages.1.layers.0.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="252">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="64" name="Multiply_8964" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="1027072" size="589824" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="65" name="Multiply_8627" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="66" name="Constant_8632" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="1616896" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="67" name="__module.resnet.encoder.stages.1.layers.0.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="266">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="68" name="__module.resnet.encoder.stages.1.layers.0.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="267">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="69" name="Multiply_8968" type="Const" version="opset1">
<data element_type="f32" shape="512, 128, 1, 1" offset="1617408" size="262144" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="70" name="Multiply_8634" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="71" name="Constant_8639" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="1879552" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="72" name="__module.resnet.encoder.stages.1.layers.0.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="281_1">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="73" name="Multiply_8972" type="Const" version="opset1">
<data element_type="f32" shape="512, 256, 1, 1" offset="1881600" size="524288" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="74" name="Multiply_8641" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="75" name="Constant_8646" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="2405888" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="76" name="__module.resnet.encoder.stages.1.layers.0.shortcut.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="294,residual.7">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="77" name="__module.resnet.encoder.stages.1.layers.0/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="281,hidden_state.7">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="78" name="__module.resnet.encoder.stages.1.layers.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="296,residual.9">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="79" name="Multiply_8976" type="Const" version="opset1">
<data element_type="f32" shape="128, 512, 1, 1" offset="2407936" size="262144" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="80" name="Multiply_8648" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="81" name="Constant_8653" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="2670080" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="82" name="__module.resnet.encoder.stages.1.layers.1.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="316">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="83" name="__module.resnet.encoder.stages.1.layers.1.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="317">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="84" name="Multiply_8980" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="2670592" size="589824" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="85" name="Multiply_8655" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="86" name="Constant_8660" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="3260416" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="87" name="__module.resnet.encoder.stages.1.layers.1.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="331">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="88" name="__module.resnet.encoder.stages.1.layers.1.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="332">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="89" name="Multiply_8984" type="Const" version="opset1">
<data element_type="f32" shape="512, 128, 1, 1" offset="3260928" size="262144" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="90" name="Multiply_8662" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="91" name="Constant_8667" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="3523072" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="92" name="__module.resnet.encoder.stages.1.layers.1.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="346_1">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="93" name="__module.resnet.encoder.stages.1.layers.1/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="346,hidden_state.9">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="94" name="__module.resnet.encoder.stages.1.layers.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="348,residual.11">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="95" name="Multiply_8988" type="Const" version="opset1">
<data element_type="f32" shape="128, 512, 1, 1" offset="3525120" size="262144" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="96" name="Multiply_8669" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="97" name="Constant_8674" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="3787264" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="98" name="__module.resnet.encoder.stages.1.layers.2.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="368">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="99" name="__module.resnet.encoder.stages.1.layers.2.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="369">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="100" name="Multiply_8992" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="3787776" size="589824" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="101" name="Multiply_8676" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="102" name="Constant_8681" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="4377600" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="103" name="__module.resnet.encoder.stages.1.layers.2.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="383">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="104" name="__module.resnet.encoder.stages.1.layers.2.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="384">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="105" name="Multiply_8996" type="Const" version="opset1">
<data element_type="f32" shape="512, 128, 1, 1" offset="4378112" size="262144" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="106" name="Multiply_8683" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="107" name="Constant_8688" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="4640256" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="108" name="__module.resnet.encoder.stages.1.layers.2.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="398_1">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="109" name="__module.resnet.encoder.stages.1.layers.2/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="398,hidden_state.11">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="110" name="__module.resnet.encoder.stages.1.layers.2.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="400,residual.13">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="111" name="Multiply_9000" type="Const" version="opset1">
<data element_type="f32" shape="128, 512, 1, 1" offset="4642304" size="262144" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="112" name="Multiply_8690" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="113" name="Constant_8695" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="4904448" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="114" name="__module.resnet.encoder.stages.1.layers.3.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="420">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="115" name="__module.resnet.encoder.stages.1.layers.3.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="421">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="116" name="Multiply_9004" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="4904960" size="589824" />
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="117" name="Multiply_8697" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="118" name="Constant_8702" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="5494784" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="119" name="__module.resnet.encoder.stages.1.layers.3.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="435">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="120" name="__module.resnet.encoder.stages.1.layers.3.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="436">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="121" name="Multiply_9008" type="Const" version="opset1">
<data element_type="f32" shape="512, 128, 1, 1" offset="5495296" size="262144" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="122" name="Multiply_8704" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="123" name="Constant_8709" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="5757440" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="124" name="__module.resnet.encoder.stages.1.layers.3.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="450_1">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="125" name="__module.resnet.encoder.stages.1.layers.3/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="450,hidden_state.13">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="126" name="__module.resnet.encoder.stages.1.layers.3.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="452">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="127" name="Multiply_9012" type="Const" version="opset1">
<data element_type="f32" shape="256, 512, 1, 1" offset="5759488" size="524288" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="128" name="Multiply_8711" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="129" name="Constant_8716" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="6283776" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="130" name="__module.resnet.encoder.stages.2.layers.0.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="484">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="131" name="__module.resnet.encoder.stages.2.layers.0.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="485">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="132" name="Multiply_9016" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="6284800" size="2359296" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="133" name="Multiply_8718" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="134" name="Constant_8723" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="8644096" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="135" name="__module.resnet.encoder.stages.2.layers.0.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="499">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="136" name="__module.resnet.encoder.stages.2.layers.0.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="500">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="137" name="Multiply_9020" type="Const" version="opset1">
<data element_type="f32" shape="1024, 256, 1, 1" offset="8645120" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="138" name="Multiply_8725" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="139" name="Constant_8730" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="9693696" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="140" name="__module.resnet.encoder.stages.2.layers.0.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="514_1">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="141" name="Multiply_9024" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="9697792" size="2097152" />
<output>
<port id="0" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="142" name="Multiply_8732" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="143" name="Constant_8737" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="11794944" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="144" name="__module.resnet.encoder.stages.2.layers.0.shortcut.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="527,residual.15">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="145" name="__module.resnet.encoder.stages.2.layers.0/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="514,hidden_state.15">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="146" name="__module.resnet.encoder.stages.2.layers.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="529,residual.17">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="147" name="Multiply_9028" type="Const" version="opset1">
<data element_type="f32" shape="256, 1024, 1, 1" offset="11799040" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="148" name="Multiply_8739" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="149" name="Constant_8744" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="12847616" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="150" name="__module.resnet.encoder.stages.2.layers.1.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="549">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="151" name="__module.resnet.encoder.stages.2.layers.1.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="550">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="152" name="Multiply_9032" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="12848640" size="2359296" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="153" name="Multiply_8746" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="154" name="Constant_8751" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="15207936" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="155" name="__module.resnet.encoder.stages.2.layers.1.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="564">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="156" name="__module.resnet.encoder.stages.2.layers.1.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="565">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="157" name="Multiply_9036" type="Const" version="opset1">
<data element_type="f32" shape="1024, 256, 1, 1" offset="15208960" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="158" name="Multiply_8753" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="159" name="Constant_8758" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="16257536" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="160" name="__module.resnet.encoder.stages.2.layers.1.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="579_1">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="161" name="__module.resnet.encoder.stages.2.layers.1/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="579,hidden_state.17">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="162" name="__module.resnet.encoder.stages.2.layers.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="581,residual.19">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="163" name="Multiply_9040" type="Const" version="opset1">
<data element_type="f32" shape="256, 1024, 1, 1" offset="16261632" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="164" name="Multiply_8760" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="165" name="Constant_8765" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="17310208" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="166" name="__module.resnet.encoder.stages.2.layers.2.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="601">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="167" name="__module.resnet.encoder.stages.2.layers.2.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="602">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="168" name="Multiply_9044" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="17311232" size="2359296" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="169" name="Multiply_8767" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="170" name="Constant_8772" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="19670528" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="171" name="__module.resnet.encoder.stages.2.layers.2.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="616">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="172" name="__module.resnet.encoder.stages.2.layers.2.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="617">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="173" name="Multiply_9048" type="Const" version="opset1">
<data element_type="f32" shape="1024, 256, 1, 1" offset="19671552" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="174" name="Multiply_8774" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="175" name="Constant_8779" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="20720128" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="176" name="__module.resnet.encoder.stages.2.layers.2.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="631_1">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="177" name="__module.resnet.encoder.stages.2.layers.2/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="631,hidden_state.19">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="178" name="__module.resnet.encoder.stages.2.layers.2.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="633,residual.21">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="179" name="Multiply_9052" type="Const" version="opset1">
<data element_type="f32" shape="256, 1024, 1, 1" offset="20724224" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="180" name="Multiply_8781" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="181" name="Constant_8786" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="21772800" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="182" name="__module.resnet.encoder.stages.2.layers.3.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="653">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="183" name="__module.resnet.encoder.stages.2.layers.3.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="654">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="184" name="Multiply_9056" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="21773824" size="2359296" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="185" name="Multiply_8788" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="186" name="Constant_8793" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="24133120" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="187" name="__module.resnet.encoder.stages.2.layers.3.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="668">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="188" name="__module.resnet.encoder.stages.2.layers.3.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="669">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="189" name="Multiply_9060" type="Const" version="opset1">
<data element_type="f32" shape="1024, 256, 1, 1" offset="24134144" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="190" name="Multiply_8795" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="191" name="Constant_8800" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="25182720" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="192" name="__module.resnet.encoder.stages.2.layers.3.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="683_1">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="193" name="__module.resnet.encoder.stages.2.layers.3/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="683,hidden_state.21">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="194" name="__module.resnet.encoder.stages.2.layers.3.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="685,residual.23">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="195" name="Multiply_9064" type="Const" version="opset1">
<data element_type="f32" shape="256, 1024, 1, 1" offset="25186816" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="196" name="Multiply_8802" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="197" name="Constant_8807" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="26235392" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="198" name="__module.resnet.encoder.stages.2.layers.4.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="705">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="199" name="__module.resnet.encoder.stages.2.layers.4.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="706">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="200" name="Multiply_9068" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="26236416" size="2359296" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="201" name="Multiply_8809" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="202" name="Constant_8814" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="28595712" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="203" name="__module.resnet.encoder.stages.2.layers.4.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="720">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="204" name="__module.resnet.encoder.stages.2.layers.4.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="721">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="205" name="Multiply_9072" type="Const" version="opset1">
<data element_type="f32" shape="1024, 256, 1, 1" offset="28596736" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="206" name="Multiply_8816" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="207" name="Constant_8821" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="29645312" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="208" name="__module.resnet.encoder.stages.2.layers.4.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="735_1">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="209" name="__module.resnet.encoder.stages.2.layers.4/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="735,hidden_state.23">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="210" name="__module.resnet.encoder.stages.2.layers.4.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="737,residual.25">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="211" name="Multiply_9076" type="Const" version="opset1">
<data element_type="f32" shape="256, 1024, 1, 1" offset="29649408" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="212" name="Multiply_8823" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="213" name="Constant_8828" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="30697984" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="214" name="__module.resnet.encoder.stages.2.layers.5.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="757">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="215" name="__module.resnet.encoder.stages.2.layers.5.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="758">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="216" name="Multiply_9080" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="30699008" size="2359296" />
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="217" name="Multiply_8830" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="218" name="Constant_8835" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="33058304" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="219" name="__module.resnet.encoder.stages.2.layers.5.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="772">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="220" name="__module.resnet.encoder.stages.2.layers.5.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="773">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="221" name="Multiply_9084" type="Const" version="opset1">
<data element_type="f32" shape="1024, 256, 1, 1" offset="33059328" size="1048576" />
<output>
<port id="0" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="222" name="Multiply_8837" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="223" name="Constant_8842" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="34107904" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="224" name="__module.resnet.encoder.stages.2.layers.5.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="787_1">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="225" name="__module.resnet.encoder.stages.2.layers.5/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="787,hidden_state.25">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="226" name="__module.resnet.encoder.stages.2.layers.5.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="789">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="227" name="Multiply_9088" type="Const" version="opset1">
<data element_type="f32" shape="512, 1024, 1, 1" offset="34112000" size="2097152" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="228" name="Multiply_8844" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="229" name="Constant_8849" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="36209152" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="230" name="__module.resnet.encoder.stages.3.layers.0.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="815">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="231" name="__module.resnet.encoder.stages.3.layers.0.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="816">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="232" name="Multiply_9092" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="36211200" size="9437184" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="233" name="Multiply_8851" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="234" name="Constant_8856" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="45648384" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="235" name="__module.resnet.encoder.stages.3.layers.0.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="830">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="236" name="__module.resnet.encoder.stages.3.layers.0.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="831">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="237" name="Multiply_9096" type="Const" version="opset1">
<data element_type="f32" shape="2048, 512, 1, 1" offset="45650432" size="4194304" />
<output>
<port id="0" precision="FP32">
<dim>2048</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="238" name="Multiply_8858" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2048</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="239" name="Constant_8863" type="Const" version="opset1">
<data element_type="f32" shape="1, 2048, 1, 1" offset="49844736" size="8192" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="240" name="__module.resnet.encoder.stages.3.layers.0.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="845_1">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="241" name="Multiply_9100" type="Const" version="opset1">
<data element_type="f32" shape="2048, 1024, 1, 1" offset="49852928" size="8388608" />
<output>
<port id="0" precision="FP32">
<dim>2048</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="242" name="Multiply_8865" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1024</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2048</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="243" name="Constant_8870" type="Const" version="opset1">
<data element_type="f32" shape="1, 2048, 1, 1" offset="58241536" size="8192" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="244" name="__module.resnet.encoder.stages.3.layers.0.shortcut.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="858,residual.27">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="245" name="__module.resnet.encoder.stages.3.layers.0/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="845,hidden_state.27">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="246" name="__module.resnet.encoder.stages.3.layers.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="860,residual.29">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="247" name="Multiply_9104" type="Const" version="opset1">
<data element_type="f32" shape="512, 2048, 1, 1" offset="58249728" size="4194304" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="248" name="Multiply_8872" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="249" name="Constant_8877" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="62444032" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="250" name="__module.resnet.encoder.stages.3.layers.1.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="880">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="251" name="__module.resnet.encoder.stages.3.layers.1.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="881">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="252" name="Multiply_9108" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="62446080" size="9437184" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="253" name="Multiply_8879" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="254" name="Constant_8884" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="71883264" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="255" name="__module.resnet.encoder.stages.3.layers.1.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="895">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="256" name="__module.resnet.encoder.stages.3.layers.1.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="896">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="257" name="Multiply_9112" type="Const" version="opset1">
<data element_type="f32" shape="2048, 512, 1, 1" offset="71885312" size="4194304" />
<output>
<port id="0" precision="FP32">
<dim>2048</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="258" name="Multiply_8886" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2048</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="259" name="Constant_8891" type="Const" version="opset1">
<data element_type="f32" shape="1, 2048, 1, 1" offset="76079616" size="8192" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="260" name="__module.resnet.encoder.stages.3.layers.1.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="910_1">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="261" name="__module.resnet.encoder.stages.3.layers.1/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="910,hidden_state.29">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="262" name="__module.resnet.encoder.stages.3.layers.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="912,residual">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="263" name="Multiply_9116" type="Const" version="opset1">
<data element_type="f32" shape="512, 2048, 1, 1" offset="76087808" size="4194304" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="264" name="Multiply_8893" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="265" name="Constant_8898" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="80282112" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="266" name="__module.resnet.encoder.stages.3.layers.2.layer.0.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="932">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="267" name="__module.resnet.encoder.stages.3.layers.2.layer.0.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="933">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="268" name="Multiply_9120" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="80284160" size="9437184" />
<output>
<port id="0" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="269" name="Multiply_8900" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="270" name="Constant_8905" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="89721344" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="271" name="__module.resnet.encoder.stages.3.layers.2.layer.1.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="947">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="272" name="__module.resnet.encoder.stages.3.layers.2.layer.1.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="948">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="273" name="Multiply_9124" type="Const" version="opset1">
<data element_type="f32" shape="2048, 512, 1, 1" offset="89723392" size="4194304" />
<output>
<port id="0" precision="FP32">
<dim>2048</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="274" name="Multiply_8907" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2048</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="275" name="Constant_8912" type="Const" version="opset1">
<data element_type="f32" shape="1, 2048, 1, 1" offset="93917696" size="8192" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="276" name="__module.resnet.encoder.stages.3.layers.2.layer.2.normalization/aten::batch_norm/BatchNormInference" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="962_1">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="277" name="__module.resnet.encoder.stages.3.layers.2/aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="962,hidden_state">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="278" name="__module.resnet.encoder.stages.3.layers.2.activation/aten::relu/Relu" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="964,input.1">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="279" name="Constant_5253" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="93925888" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="280" name="__module.resnet.pooler/aten::adaptive_avg_pool2d/AdaptiveAvgPool" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="281" name="Constant_9312" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="93925904" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="282" name="__module.resnet.pooler/aten::adaptive_avg_pool2d/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="966,input">
<dim>-1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="283" name="Concat_3859" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="93925936" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="284" name="__module.classifier.0/aten::flatten/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="971">
<dim>-1</dim>
<dim>2048</dim>
</port>
</output>
</layer>
<layer id="285" name="self.classifier.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="1000, 2048" offset="93925952" size="8192000" />
<output>
<port id="0" precision="FP32" names="self.classifier.1.weight">
<dim>1000</dim>
<dim>2048</dim>
</port>
</output>
</layer>
<layer id="286" name="__module.classifier.1/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2048</dim>
</port>
<port id="1" precision="FP32">
<dim>1000</dim>
<dim>2048</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1000</dim>
</port>
</output>
</layer>
<layer id="287" name="Constant_9301" type="Const" version="opset1">
<data element_type="f32" shape="1, 1000" offset="102117952" size="4000" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1000</dim>
</port>
</output>
</layer>
<layer id="288" name="__module.classifier.1/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1000</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1000</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="logits">
<dim>-1</dim>
<dim>1000</dim>
</port>
</output>
</layer>
<layer id="289" name="Result_3763" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1000</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
<edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
<edge from-layer="6" from-port="1" to-layer="8" to-port="0" />
<edge from-layer="6" from-port="1" to-layer="22" to-port="0" />
<edge from-layer="7" from-port="0" to-layer="8" to-port="1" />
<edge from-layer="8" from-port="2" to-layer="10" to-port="0" />
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
<edge from-layer="10" from-port="2" to-layer="11" to-port="0" />
<edge from-layer="11" from-port="1" to-layer="13" to-port="0" />
<edge from-layer="12" from-port="0" to-layer="13" to-port="1" />
<edge from-layer="13" from-port="2" to-layer="15" to-port="0" />
<edge from-layer="14" from-port="0" to-layer="15" to-port="1" />
<edge from-layer="15" from-port="2" to-layer="16" to-port="0" />
<edge from-layer="16" from-port="1" to-layer="18" to-port="0" />
<edge from-layer="17" from-port="0" to-layer="18" to-port="1" />
<edge from-layer="18" from-port="2" to-layer="20" to-port="0" />
<edge from-layer="19" from-port="0" to-layer="20" to-port="1" />
<edge from-layer="20" from-port="2" to-layer="25" to-port="0" />
<edge from-layer="21" from-port="0" to-layer="22" to-port="1" />
<edge from-layer="22" from-port="2" to-layer="24" to-port="0" />
<edge from-layer="23" from-port="0" to-layer="24" to-port="1" />
<edge from-layer="24" from-port="2" to-layer="25" to-port="1" />
<edge from-layer="25" from-port="2" to-layer="26" to-port="0" />
<edge from-layer="26" from-port="1" to-layer="41" to-port="1" />
<edge from-layer="26" from-port="1" to-layer="28" to-port="0" />
<edge from-layer="27" from-port="0" to-layer="28" to-port="1" />
<edge from-layer="28" from-port="2" to-layer="30" to-port="0" />
<edge from-layer="29" from-port="0" to-layer="30" to-port="1" />
<edge from-layer="30" from-port="2" to-layer="31" to-port="0" />
<edge from-layer="31" from-port="1" to-layer="33" to-port="0" />
<edge from-layer="32" from-port="0" to-layer="33" to-port="1" />
<edge from-layer="33" from-port="2" to-layer="35" to-port="0" />
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
<edge from-layer="35" from-port="2" to-layer="36" to-port="0" />
<edge from-layer="36" from-port="1" to-layer="38" to-port="0" />
<edge from-layer="37" from-port="0" to-layer="38" to-port="1" />
<edge from-layer="38" from-port="2" to-layer="40" to-port="0" />
<edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
<edge from-layer="40" from-port="2" to-layer="41" to-port="0" />
<edge from-layer="41" from-port="2" to-layer="42" to-port="0" />
<edge from-layer="42" from-port="1" to-layer="44" to-port="0" />
<edge from-layer="42" from-port="1" to-layer="57" to-port="1" />
<edge from-layer="43" from-port="0" to-layer="44" to-port="1" />
<edge from-layer="44" from-port="2" to-layer="46" to-port="0" />
<edge from-layer="45" from-port="0" to-layer="46" to-port="1" />
<edge from-layer="46" from-port="2" to-layer="47" to-port="0" />
<edge from-layer="47" from-port="1" to-layer="49" to-port="0" />
<edge from-layer="48" from-port="0" to-layer="49" to-port="1" />
<edge from-layer="49" from-port="2" to-layer="51" to-port="0" />
<edge from-layer="50" from-port="0" to-layer="51" to-port="1" />
<edge from-layer="51" from-port="2" to-layer="52" to-port="0" />
<edge from-layer="52" from-port="1" to-layer="54" to-port="0" />
<edge from-layer="53" from-port="0" to-layer="54" to-port="1" />
<edge from-layer="54" from-port="2" to-layer="56" to-port="0" />
<edge from-layer="55" from-port="0" to-layer="56" to-port="1" />
<edge from-layer="56" from-port="2" to-layer="57" to-port="0" />
<edge from-layer="57" from-port="2" to-layer="58" to-port="0" />
<edge from-layer="58" from-port="1" to-layer="60" to-port="0" />
<edge from-layer="58" from-port="1" to-layer="74" to-port="0" />
<edge from-layer="59" from-port="0" to-layer="60" to-port="1" />
<edge from-layer="60" from-port="2" to-layer="62" to-port="0" />
<edge from-layer="61" from-port="0" to-layer="62" to-port="1" />
<edge from-layer="62" from-port="2" to-layer="63" to-port="0" />
<edge from-layer="63" from-port="1" to-layer="65" to-port="0" />
<edge from-layer="64" from-port="0" to-layer="65" to-port="1" />
<edge from-layer="65" from-port="2" to-layer="67" to-port="0" />
<edge from-layer="66" from-port="0" to-layer="67" to-port="1" />
<edge from-layer="67" from-port="2" to-layer="68" to-port="0" />
<edge from-layer="68" from-port="1" to-layer="70" to-port="0" />
<edge from-layer="69" from-port="0" to-layer="70" to-port="1" />
<edge from-layer="70" from-port="2" to-layer="72" to-port="0" />
<edge from-layer="71" from-port="0" to-layer="72" to-port="1" />
<edge from-layer="72" from-port="2" to-layer="77" to-port="0" />
<edge from-layer="73" from-port="0" to-layer="74" to-port="1" />
<edge from-layer="74" from-port="2" to-layer="76" to-port="0" />
<edge from-layer="75" from-port="0" to-layer="76" to-port="1" />
<edge from-layer="76" from-port="2" to-layer="77" to-port="1" />
<edge from-layer="77" from-port="2" to-layer="78" to-port="0" />
<edge from-layer="78" from-port="1" to-layer="80" to-port="0" />
<edge from-layer="78" from-port="1" to-layer="93" to-port="1" />
<edge from-layer="79" from-port="0" to-layer="80" to-port="1" />
<edge from-layer="80" from-port="2" to-layer="82" to-port="0" />
<edge from-layer="81" from-port="0" to-layer="82" to-port="1" />
<edge from-layer="82" from-port="2" to-layer="83" to-port="0" />
<edge from-layer="83" from-port="1" to-layer="85" to-port="0" />
<edge from-layer="84" from-port="0" to-layer="85" to-port="1" />
<edge from-layer="85" from-port="2" to-layer="87" to-port="0" />
<edge from-layer="86" from-port="0" to-layer="87" to-port="1" />
<edge from-layer="87" from-port="2" to-layer="88" to-port="0" />
<edge from-layer="88" from-port="1" to-layer="90" to-port="0" />
<edge from-layer="89" from-port="0" to-layer="90" to-port="1" />
<edge from-layer="90" from-port="2" to-layer="92" to-port="0" />
<edge from-layer="91" from-port="0" to-layer="92" to-port="1" />
<edge from-layer="92" from-port="2" to-layer="93" to-port="0" />
<edge from-layer="93" from-port="2" to-layer="94" to-port="0" />
<edge from-layer="94" from-port="1" to-layer="96" to-port="0" />
<edge from-layer="94" from-port="1" to-layer="109" to-port="1" />
<edge from-layer="95" from-port="0" to-layer="96" to-port="1" />
<edge from-layer="96" from-port="2" to-layer="98" to-port="0" />
<edge from-layer="97" from-port="0" to-layer="98" to-port="1" />
<edge from-layer="98" from-port="2" to-layer="99" to-port="0" />
<edge from-layer="99" from-port="1" to-layer="101" to-port="0" />
<edge from-layer="100" from-port="0" to-layer="101" to-port="1" />
<edge from-layer="101" from-port="2" to-layer="103" to-port="0" />
<edge from-layer="102" from-port="0" to-layer="103" to-port="1" />
<edge from-layer="103" from-port="2" to-layer="104" to-port="0" />
<edge from-layer="104" from-port="1" to-layer="106" to-port="0" />
<edge from-layer="105" from-port="0" to-layer="106" to-port="1" />
<edge from-layer="106" from-port="2" to-layer="108" to-port="0" />
<edge from-layer="107" from-port="0" to-layer="108" to-port="1" />
<edge from-layer="108" from-port="2" to-layer="109" to-port="0" />
<edge from-layer="109" from-port="2" to-layer="110" to-port="0" />
<edge from-layer="110" from-port="1" to-layer="112" to-port="0" />
<edge from-layer="110" from-port="1" to-layer="125" to-port="1" />
<edge from-layer="111" from-port="0" to-layer="112" to-port="1" />
<edge from-layer="112" from-port="2" to-layer="114" to-port="0" />
<edge from-layer="113" from-port="0" to-layer="114" to-port="1" />
<edge from-layer="114" from-port="2" to-layer="115" to-port="0" />
<edge from-layer="115" from-port="1" to-layer="117" to-port="0" />
<edge from-layer="116" from-port="0" to-layer="117" to-port="1" />
<edge from-layer="117" from-port="2" to-layer="119" to-port="0" />
<edge from-layer="118" from-port="0" to-layer="119" to-port="1" />
<edge from-layer="119" from-port="2" to-layer="120" to-port="0" />
<edge from-layer="120" from-port="1" to-layer="122" to-port="0" />
<edge from-layer="121" from-port="0" to-layer="122" to-port="1" />
<edge from-layer="122" from-port="2" to-layer="124" to-port="0" />
<edge from-layer="123" from-port="0" to-layer="124" to-port="1" />
<edge from-layer="124" from-port="2" to-layer="125" to-port="0" />
<edge from-layer="125" from-port="2" to-layer="126" to-port="0" />
<edge from-layer="126" from-port="1" to-layer="128" to-port="0" />
<edge from-layer="126" from-port="1" to-layer="142" to-port="0" />
<edge from-layer="127" from-port="0" to-layer="128" to-port="1" />
<edge from-layer="128" from-port="2" to-layer="130" to-port="0" />
<edge from-layer="129" from-port="0" to-layer="130" to-port="1" />
<edge from-layer="130" from-port="2" to-layer="131" to-port="0" />
<edge from-layer="131" from-port="1" to-layer="133" to-port="0" />
<edge from-layer="132" from-port="0" to-layer="133" to-port="1" />
<edge from-layer="133" from-port="2" to-layer="135" to-port="0" />
<edge from-layer="134" from-port="0" to-layer="135" to-port="1" />
<edge from-layer="135" from-port="2" to-layer="136" to-port="0" />
<edge from-layer="136" from-port="1" to-layer="138" to-port="0" />
<edge from-layer="137" from-port="0" to-layer="138" to-port="1" />
<edge from-layer="138" from-port="2" to-layer="140" to-port="0" />
<edge from-layer="139" from-port="0" to-layer="140" to-port="1" />
<edge from-layer="140" from-port="2" to-layer="145" to-port="0" />
<edge from-layer="141" from-port="0" to-layer="142" to-port="1" />
<edge from-layer="142" from-port="2" to-layer="144" to-port="0" />
<edge from-layer="143" from-port="0" to-layer="144" to-port="1" />
<edge from-layer="144" from-port="2" to-layer="145" to-port="1" />
<edge from-layer="145" from-port="2" to-layer="146" to-port="0" />
<edge from-layer="146" from-port="1" to-layer="148" to-port="0" />
<edge from-layer="146" from-port="1" to-layer="161" to-port="1" />
<edge from-layer="147" from-port="0" to-layer="148" to-port="1" />
<edge from-layer="148" from-port="2" to-layer="150" to-port="0" />
<edge from-layer="149" from-port="0" to-layer="150" to-port="1" />
<edge from-layer="150" from-port="2" to-layer="151" to-port="0" />
<edge from-layer="151" from-port="1" to-layer="153" to-port="0" />
<edge from-layer="152" from-port="0" to-layer="153" to-port="1" />
<edge from-layer="153" from-port="2" to-layer="155" to-port="0" />
<edge from-layer="154" from-port="0" to-layer="155" to-port="1" />
<edge from-layer="155" from-port="2" to-layer="156" to-port="0" />
<edge from-layer="156" from-port="1" to-layer="158" to-port="0" />
<edge from-layer="157" from-port="0" to-layer="158" to-port="1" />
<edge from-layer="158" from-port="2" to-layer="160" to-port="0" />
<edge from-layer="159" from-port="0" to-layer="160" to-port="1" />
<edge from-layer="160" from-port="2" to-layer="161" to-port="0" />
<edge from-layer="161" from-port="2" to-layer="162" to-port="0" />
<edge from-layer="162" from-port="1" to-layer="164" to-port="0" />
<edge from-layer="162" from-port="1" to-layer="177" to-port="1" />
<edge from-layer="163" from-port="0" to-layer="164" to-port="1" />
<edge from-layer="164" from-port="2" to-layer="166" to-port="0" />
<edge from-layer="165" from-port="0" to-layer="166" to-port="1" />
<edge from-layer="166" from-port="2" to-layer="167" to-port="0" />
<edge from-layer="167" from-port="1" to-layer="169" to-port="0" />
<edge from-layer="168" from-port="0" to-layer="169" to-port="1" />
<edge from-layer="169" from-port="2" to-layer="171" to-port="0" />
<edge from-layer="170" from-port="0" to-layer="171" to-port="1" />
<edge from-layer="171" from-port="2" to-layer="172" to-port="0" />
<edge from-layer="172" from-port="1" to-layer="174" to-port="0" />
<edge from-layer="173" from-port="0" to-layer="174" to-port="1" />
<edge from-layer="174" from-port="2" to-layer="176" to-port="0" />
<edge from-layer="175" from-port="0" to-layer="176" to-port="1" />
<edge from-layer="176" from-port="2" to-layer="177" to-port="0" />
<edge from-layer="177" from-port="2" to-layer="178" to-port="0" />
<edge from-layer="178" from-port="1" to-layer="180" to-port="0" />
<edge from-layer="178" from-port="1" to-layer="193" to-port="1" />
<edge from-layer="179" from-port="0" to-layer="180" to-port="1" />
<edge from-layer="180" from-port="2" to-layer="182" to-port="0" />
<edge from-layer="181" from-port="0" to-layer="182" to-port="1" />
<edge from-layer="182" from-port="2" to-layer="183" to-port="0" />
<edge from-layer="183" from-port="1" to-layer="185" to-port="0" />
<edge from-layer="184" from-port="0" to-layer="185" to-port="1" />
<edge from-layer="185" from-port="2" to-layer="187" to-port="0" />
<edge from-layer="186" from-port="0" to-layer="187" to-port="1" />
<edge from-layer="187" from-port="2" to-layer="188" to-port="0" />
<edge from-layer="188" from-port="1" to-layer="190" to-port="0" />
<edge from-layer="189" from-port="0" to-layer="190" to-port="1" />
<edge from-layer="190" from-port="2" to-layer="192" to-port="0" />
<edge from-layer="191" from-port="0" to-layer="192" to-port="1" />
<edge from-layer="192" from-port="2" to-layer="193" to-port="0" />
<edge from-layer="193" from-port="2" to-layer="194" to-port="0" />
<edge from-layer="194" from-port="1" to-layer="196" to-port="0" />
<edge from-layer="194" from-port="1" to-layer="209" to-port="1" />
<edge from-layer="195" from-port="0" to-layer="196" to-port="1" />
<edge from-layer="196" from-port="2" to-layer="198" to-port="0" />
<edge from-layer="197" from-port="0" to-layer="198" to-port="1" />
<edge from-layer="198" from-port="2" to-layer="199" to-port="0" />
<edge from-layer="199" from-port="1" to-layer="201" to-port="0" />
<edge from-layer="200" from-port="0" to-layer="201" to-port="1" />
<edge from-layer="201" from-port="2" to-layer="203" to-port="0" />
<edge from-layer="202" from-port="0" to-layer="203" to-port="1" />
<edge from-layer="203" from-port="2" to-layer="204" to-port="0" />
<edge from-layer="204" from-port="1" to-layer="206" to-port="0" />
<edge from-layer="205" from-port="0" to-layer="206" to-port="1" />
<edge from-layer="206" from-port="2" to-layer="208" to-port="0" />
<edge from-layer="207" from-port="0" to-layer="208" to-port="1" />
<edge from-layer="208" from-port="2" to-layer="209" to-port="0" />
<edge from-layer="209" from-port="2" to-layer="210" to-port="0" />
<edge from-layer="210" from-port="1" to-layer="225" to-port="1" />
<edge from-layer="210" from-port="1" to-layer="212" to-port="0" />
<edge from-layer="211" from-port="0" to-layer="212" to-port="1" />
<edge from-layer="212" from-port="2" to-layer="214" to-port="0" />
<edge from-layer="213" from-port="0" to-layer="214" to-port="1" />
<edge from-layer="214" from-port="2" to-layer="215" to-port="0" />
<edge from-layer="215" from-port="1" to-layer="217" to-port="0" />
<edge from-layer="216" from-port="0" to-layer="217" to-port="1" />
<edge from-layer="217" from-port="2" to-layer="219" to-port="0" />
<edge from-layer="218" from-port="0" to-layer="219" to-port="1" />
<edge from-layer="219" from-port="2" to-layer="220" to-port="0" />
<edge from-layer="220" from-port="1" to-layer="222" to-port="0" />
<edge from-layer="221" from-port="0" to-layer="222" to-port="1" />
<edge from-layer="222" from-port="2" to-layer="224" to-port="0" />
<edge from-layer="223" from-port="0" to-layer="224" to-port="1" />
<edge from-layer="224" from-port="2" to-layer="225" to-port="0" />
<edge from-layer="225" from-port="2" to-layer="226" to-port="0" />
<edge from-layer="226" from-port="1" to-layer="242" to-port="0" />
<edge from-layer="226" from-port="1" to-layer="228" to-port="0" />
<edge from-layer="227" from-port="0" to-layer="228" to-port="1" />
<edge from-layer="228" from-port="2" to-layer="230" to-port="0" />
<edge from-layer="229" from-port="0" to-layer="230" to-port="1" />
<edge from-layer="230" from-port="2" to-layer="231" to-port="0" />
<edge from-layer="231" from-port="1" to-layer="233" to-port="0" />
<edge from-layer="232" from-port="0" to-layer="233" to-port="1" />
<edge from-layer="233" from-port="2" to-layer="235" to-port="0" />
<edge from-layer="234" from-port="0" to-layer="235" to-port="1" />
<edge from-layer="235" from-port="2" to-layer="236" to-port="0" />
<edge from-layer="236" from-port="1" to-layer="238" to-port="0" />
<edge from-layer="237" from-port="0" to-layer="238" to-port="1" />
<edge from-layer="238" from-port="2" to-layer="240" to-port="0" />
<edge from-layer="239" from-port="0" to-layer="240" to-port="1" />
<edge from-layer="240" from-port="2" to-layer="245" to-port="0" />
<edge from-layer="241" from-port="0" to-layer="242" to-port="1" />
<edge from-layer="242" from-port="2" to-layer="244" to-port="0" />
<edge from-layer="243" from-port="0" to-layer="244" to-port="1" />
<edge from-layer="244" from-port="2" to-layer="245" to-port="1" />
<edge from-layer="245" from-port="2" to-layer="246" to-port="0" />
<edge from-layer="246" from-port="1" to-layer="261" to-port="1" />
<edge from-layer="246" from-port="1" to-layer="248" to-port="0" />
<edge from-layer="247" from-port="0" to-layer="248" to-port="1" />
<edge from-layer="248" from-port="2" to-layer="250" to-port="0" />
<edge from-layer="249" from-port="0" to-layer="250" to-port="1" />
<edge from-layer="250" from-port="2" to-layer="251" to-port="0" />
<edge from-layer="251" from-port="1" to-layer="253" to-port="0" />
<edge from-layer="252" from-port="0" to-layer="253" to-port="1" />
<edge from-layer="253" from-port="2" to-layer="255" to-port="0" />
<edge from-layer="254" from-port="0" to-layer="255" to-port="1" />
<edge from-layer="255" from-port="2" to-layer="256" to-port="0" />
<edge from-layer="256" from-port="1" to-layer="258" to-port="0" />
<edge from-layer="257" from-port="0" to-layer="258" to-port="1" />
<edge from-layer="258" from-port="2" to-layer="260" to-port="0" />
<edge from-layer="259" from-port="0" to-layer="260" to-port="1" />
<edge from-layer="260" from-port="2" to-layer="261" to-port="0" />
<edge from-layer="261" from-port="2" to-layer="262" to-port="0" />
<edge from-layer="262" from-port="1" to-layer="277" to-port="1" />
<edge from-layer="262" from-port="1" to-layer="264" to-port="0" />
<edge from-layer="263" from-port="0" to-layer="264" to-port="1" />
<edge from-layer="264" from-port="2" to-layer="266" to-port="0" />
<edge from-layer="265" from-port="0" to-layer="266" to-port="1" />
<edge from-layer="266" from-port="2" to-layer="267" to-port="0" />
<edge from-layer="267" from-port="1" to-layer="269" to-port="0" />
<edge from-layer="268" from-port="0" to-layer="269" to-port="1" />
<edge from-layer="269" from-port="2" to-layer="271" to-port="0" />
<edge from-layer="270" from-port="0" to-layer="271" to-port="1" />
<edge from-layer="271" from-port="2" to-layer="272" to-port="0" />
<edge from-layer="272" from-port="1" to-layer="274" to-port="0" />
<edge from-layer="273" from-port="0" to-layer="274" to-port="1" />
<edge from-layer="274" from-port="2" to-layer="276" to-port="0" />
<edge from-layer="275" from-port="0" to-layer="276" to-port="1" />
<edge from-layer="276" from-port="2" to-layer="277" to-port="0" />
<edge from-layer="277" from-port="2" to-layer="278" to-port="0" />
<edge from-layer="278" from-port="1" to-layer="280" to-port="0" />
<edge from-layer="279" from-port="0" to-layer="280" to-port="1" />
<edge from-layer="280" from-port="2" to-layer="282" to-port="0" />
<edge from-layer="281" from-port="0" to-layer="282" to-port="1" />
<edge from-layer="282" from-port="2" to-layer="284" to-port="0" />
<edge from-layer="283" from-port="0" to-layer="284" to-port="1" />
<edge from-layer="284" from-port="2" to-layer="286" to-port="0" />
<edge from-layer="285" from-port="0" to-layer="286" to-port="1" />
<edge from-layer="286" from-port="2" to-layer="288" to-port="0" />
<edge from-layer="287" from-port="0" to-layer="288" to-port="1" />
<edge from-layer="288" from-port="2" to-layer="289" to-port="0" />
</edges>
<rt_info>
<Runtime_version value="2024.2.0-15519-5c0f38f83f6-releases/2024/2" />
<conversion_parameters>
<framework value="pytorch" />
<is_python_object value="True" />
</conversion_parameters>
<optimum>
<optimum_intel_version value="1.18.1" />
<optimum_version value="1.21.2" />
<pytorch_version value="2.3.1" />
<transformers_version value="4.42.4" />
</optimum>
</rt_info>
</net>