ChangyuanWang commited on
Commit
5245a7d
·
verified ·
1 Parent(s): f1fc6c6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -3
README.md CHANGED
@@ -1,3 +1,19 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+
6
+ # [NeurIPS'24]Q-VLM: Post-training Quantization for Large Vision-Language Models
7
+
8
+ *Efficient and accurate memory saving method towards W4A4 large multi-modal models.* [[Paper](https://arxiv.org/abs/2410.08119)][[Code](https://github.com/ChangyuanWang17/QVLM)]
9
+
10
+ > Q-VLM: Post-training Quantization for Large Vision-Language Models
11
+ > [Changyuan Wang](https://changyuanwang17.github.io), [Ziwei Wang](https://ziweiwangthu.github.io), [Xiuwei Xu](https://xuxw98.github.io/), [Yansong Tang](https://andytang15.github.io), [Jie Zhou](https://scholar.google.com/citations?user=6a79aPwAAAAJ&hl=en&authuser=1), [Jiwen Lu](http://ivg.au.tsinghua.edu.cn/Jiwen_Lu/)
12
+
13
+ ## Finetuning LLaVA Model on ScienceQA Dataset
14
+
15
+ Thanks for LLaVA (https://github.com/haotian-liu/LLaVA) for the amazing open-source model!
16
+
17
+ We combined the LLaVA-7B-v1.1 model ([LLaVA-7B-v1.1](https://huggingface.co/liuhaotian/LLaVA-Lightning-7B-delta-v1-1)) and the projector from LLaVA-7B-v1.3 ([LLaVA-7B-v1.3 projector](https://huggingface.co/liuhaotian/llava-pretrain-vicuna-7b-v1.3/tree/main)) and finetuned the model on the ScienceQA dataset. This model is used to test the effectiveness of our quantization method on the ScienceQA dataset.
18
+
19
+