Transformers
English
code
Inference Endpoints
Canstralian commited on
Commit
960f3f1
·
verified ·
1 Parent(s): 1ee5004

Create model..py

Browse files
Files changed (1) hide show
  1. model..py +41 -0
model..py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+
3
+ # Function to load the model
4
+ def load_model(model_name):
5
+ try:
6
+ # Load the model from Hugging Face or local storage (by name)
7
+ model = pipeline("text-classification", model=model_name)
8
+ return model
9
+ except Exception as e:
10
+ print(f"Error loading model: {e}")
11
+ return None
12
+
13
+ # Function to run inference using the selected model
14
+ def run_inference(user_input, selected_model, prompt=None):
15
+ model = load_model(selected_model)
16
+ if model:
17
+ # If a prompt is provided, prepend it to the input text
18
+ if prompt:
19
+ input_text = f"{prompt}\n{user_input}"
20
+ else:
21
+ input_text = user_input
22
+
23
+ try:
24
+ # Run inference and check model output
25
+ result = model(input_text)
26
+
27
+ # Assuming the output format is a list of dicts with 'label' field
28
+ return result[0]['label'] if 'label' in result[0] else "Error: No label in output"
29
+ except Exception as e:
30
+ return f"Error during inference: {e}"
31
+ else:
32
+ return f"Error: Model '{selected_model}' failed to load."
33
+
34
+ # Example usage
35
+ selected_model = "Canstralian/CySec_Known_Exploit_Analyzer"
36
+ user_input = "Sample exploit description"
37
+ prompt = "Classify the following cybersecurity exploit:"
38
+
39
+ # Run inference
40
+ result = run_inference(user_input, selected_model, prompt)
41
+ print(f"Inference Result: {result}")