Canstralian
commited on
Create model..py
Browse files
model..py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
# Function to load the model
|
4 |
+
def load_model(model_name):
|
5 |
+
try:
|
6 |
+
# Load the model from Hugging Face or local storage (by name)
|
7 |
+
model = pipeline("text-classification", model=model_name)
|
8 |
+
return model
|
9 |
+
except Exception as e:
|
10 |
+
print(f"Error loading model: {e}")
|
11 |
+
return None
|
12 |
+
|
13 |
+
# Function to run inference using the selected model
|
14 |
+
def run_inference(user_input, selected_model, prompt=None):
|
15 |
+
model = load_model(selected_model)
|
16 |
+
if model:
|
17 |
+
# If a prompt is provided, prepend it to the input text
|
18 |
+
if prompt:
|
19 |
+
input_text = f"{prompt}\n{user_input}"
|
20 |
+
else:
|
21 |
+
input_text = user_input
|
22 |
+
|
23 |
+
try:
|
24 |
+
# Run inference and check model output
|
25 |
+
result = model(input_text)
|
26 |
+
|
27 |
+
# Assuming the output format is a list of dicts with 'label' field
|
28 |
+
return result[0]['label'] if 'label' in result[0] else "Error: No label in output"
|
29 |
+
except Exception as e:
|
30 |
+
return f"Error during inference: {e}"
|
31 |
+
else:
|
32 |
+
return f"Error: Model '{selected_model}' failed to load."
|
33 |
+
|
34 |
+
# Example usage
|
35 |
+
selected_model = "Canstralian/CySec_Known_Exploit_Analyzer"
|
36 |
+
user_input = "Sample exploit description"
|
37 |
+
prompt = "Classify the following cybersecurity exploit:"
|
38 |
+
|
39 |
+
# Run inference
|
40 |
+
result = run_inference(user_input, selected_model, prompt)
|
41 |
+
print(f"Inference Result: {result}")
|