Canstralian
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import openai
|
3 |
+
|
4 |
+
# Load exploit detection model
|
5 |
+
exploit_detector = pipeline("text-classification", model="Canstralian/CySec_Known_Exploit_Analyzer")
|
6 |
+
|
7 |
+
# Initialize OpenAI API (or Replit's API)
|
8 |
+
openai.api_key = "your-openai-api-key"
|
9 |
+
|
10 |
+
def detect_and_remediate(exploit_input):
|
11 |
+
# Step 1: Detect exploit
|
12 |
+
exploit_result = exploit_detector(exploit_input)
|
13 |
+
if exploit_result[0]['label'] == "EXPLOIT_DETECTED":
|
14 |
+
print("Exploit detected!")
|
15 |
+
|
16 |
+
# Step 2: Generate remediation code using Replit’s code model
|
17 |
+
remediation_prompt = f"Generate Python code to fix the following exploit: {exploit_input}"
|
18 |
+
remediation_code = openai.Completion.create(
|
19 |
+
engine="code-davinci-002", # Or Replit's equivalent
|
20 |
+
prompt=remediation_prompt,
|
21 |
+
max_tokens=150
|
22 |
+
)
|
23 |
+
|
24 |
+
return remediation_code.choices[0].text.strip()
|
25 |
+
else:
|
26 |
+
return "No exploit detected."
|
27 |
+
|
28 |
+
# Example input: a piece of code or log indicating a vulnerability
|
29 |
+
input_code = "Vulnerable code snippet here"
|
30 |
+
remediation = detect_and_remediate(input_code)
|
31 |
+
print(remediation)
|