CanadaKasper commited on
Commit
f8fb8aa
·
1 Parent(s): 33792eb

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.17 +/- 20.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e23fad670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e23fad700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e23fad790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e23fad820>", "_build": "<function ActorCriticPolicy._build at 0x7f3e23fad8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3e23fad940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e23fad9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3e23fada60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e23fadaf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e23fadb80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e23fadc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e23fa2e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670708728562843488, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqmt71//sk+bpjFPdJViL5VaRG9AEhdPQAAAAAAAAAAOoQuvsV4fz+VYIi+O7i6vkCWpL7mg6m9AAAAAAAAAADz8y6+1EsVP0roCT7zQ5G+1pyPvQiP8j0AAAAAAAAAAE3BWT1ch0W6qjRlOncM4rSTbJu7U4iHuQAAgD8AAIA/4BBiPpStIr1TDF87qdEXuj5ekb4GL+O6AACAPwAAgD9acem9NCQIPhJ0Mz3WxsW904WEvSW1j70AAAAAAAAAANpHjb2AJvE+PfmMPUwFhr7fmvo8Bp1fPAAAAAAAAAAA88TWvfUJUj7/XRc+sV13vmfDozxTOXq8AAAAAAAAAACaz0w9dqsUvKKyaDzStBY96wZ+PSj3870AAIA/AACAP/MpAT6xlgg8gFHGvHZ28r2/5pO7nldCPgAAAAAAAAAAzUqrvEhTgrpW12y6JiFmteA7mro2KYo5AACAPwAAgD+akpC8nKUjvB7Z3j1FlTy9Yi8Cu1NlEr0AAIA/AACAP80pPz1FUP88hDwHvbG5ab5oQw891O46vQAAAAAAAAAAsz3bPSRUnT9rvO09EpXIvhDeAj5HoxG9AAAAAAAAAADNkDW8eyazumWWpjbmK6oxCZ2IOfaywrUAAIA/AACAPwDwljzpxBg9j7mBvJqi770K1P+8kCSXPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadYZHcUCUhpRSlIwBbJRNWgGMAXSUR0CcMlBmf5DadX2UKGgGaAloD0MIpP0PsJbtcUCUhpRSlGgVS/poFkdAnDJ+o5xR23V9lChoBmgJaA9DCATo9/2bh29AlIaUUpRoFU17AWgWR0CcM9czImw8dX2UKGgGaAloD0MI2sU0072AQUCUhpRSlGgVS+BoFkdAnDRzCDVYp3V9lChoBmgJaA9DCFmGONYFuHBAlIaUUpRoFUvzaBZHQJw0nTy8SPF1fZQoaAZoCWgPQwhGlWHcTUxyQJSGlFKUaBVNXQFoFkdAnDUJ9ZzPr3V9lChoBmgJaA9DCJ29M9qquHBAlIaUUpRoFU0hAWgWR0CcNYYc/+sHdX2UKGgGaAloD0MIZeHra90fcUCUhpRSlGgVTSQBaBZHQJw2J8+iaiN1fZQoaAZoCWgPQwhw0clSq7RxQJSGlFKUaBVN4wFoFkdAnDZkfPomonV9lChoBmgJaA9DCKrukc3Vv29AlIaUUpRoFU1DAWgWR0CcNv8La24NdX2UKGgGaAloD0MIeJeL+A5icUCUhpRSlGgVTVsBaBZHQJw4hPTG5tp1fZQoaAZoCWgPQwgX2c73U9tuQJSGlFKUaBVNTwFoFkdAnDimCiAUcnV9lChoBmgJaA9DCEevBijNOXBAlIaUUpRoFU0PAWgWR0CcOf5EMLF5dX2UKGgGaAloD0MIvqCFBIyccECUhpRSlGgVTQoBaBZHQJw6UOYplSV1fZQoaAZoCWgPQwivmBHenpxvQJSGlFKUaBVNPgFoFkdAnDq6E384xXV9lChoBmgJaA9DCHNMFvefv29AlIaUUpRoFU0/AWgWR0CcO2gRbr1NdX2UKGgGaAloD0MIUg/R6A6mcECUhpRSlGgVTTcBaBZHQJw8EsBhhH91fZQoaAZoCWgPQwgJ+3YSEYxxQJSGlFKUaBVNFwFoFkdAnDxOaWom5XV9lChoBmgJaA9DCGJqSx3kdSpAlIaUUpRoFUv0aBZHQJw81ATqSox1fZQoaAZoCWgPQwgz3eukvm9xQJSGlFKUaBVNGwFoFkdAnDz3o1UEPnV9lChoBmgJaA9DCATidf0CcGxAlIaUUpRoFU10AWgWR0CcPbQEIPbxdX2UKGgGaAloD0MIshNeghM0ckCUhpRSlGgVS/RoFkdAnD5RwZOzp3V9lChoBmgJaA9DCFoRNdGnLHBAlIaUUpRoFU0+AWgWR0CcPn0WdmQKdX2UKGgGaAloD0MIw7zHmSZUckCUhpRSlGgVTRYBaBZHQJw+netSydF1fZQoaAZoCWgPQwj/kenQaRFvQJSGlFKUaBVNWAFoFkdAnD7SflIVd3V9lChoBmgJaA9DCH8yxofZK3BAlIaUUpRoFU1GAWgWR0CcP40PpY9xdX2UKGgGaAloD0MI1ljC2hhmcECUhpRSlGgVTSABaBZHQJxA5AHE/B51fZQoaAZoCWgPQwiN0xBV+GtMQJSGlFKUaBVL0GgWR0CcQciFj/dZdX2UKGgGaAloD0MIuW+1ThxJcUCUhpRSlGgVTScBaBZHQJxCbux8lX11fZQoaAZoCWgPQwjcL5+sGNBCQJSGlFKUaBVL/WgWR0CcQod2Pkq+dX2UKGgGaAloD0MIUU1J1mGBb0CUhpRSlGgVTUEBaBZHQJxDnoW56MR1fZQoaAZoCWgPQwiZDp2et5BxQJSGlFKUaBVNTAFoFkdAnESBYeT3ZnV9lChoBmgJaA9DCKn6lc4HRnBAlIaUUpRoFU2UAWgWR0CcRJ0jC53DdX2UKGgGaAloD0MIDRgkfRqjcECUhpRSlGgVTRcBaBZHQJxFO5Yoy9F1fZQoaAZoCWgPQwidnKG4o3VxQJSGlFKUaBVNAgFoFkdAnEVhfShJy3V9lChoBmgJaA9DCD3RdeEHWG5AlIaUUpRoFU04AWgWR0CcRZCXyAhCdX2UKGgGaAloD0MInDI330jackCUhpRSlGgVTTQBaBZHQJxF8Y64lQd1fZQoaAZoCWgPQwhCeoocokVxQJSGlFKUaBVNFQFoFkdAnEa/kili0HV9lChoBmgJaA9DCCS3Jt3WlHBAlIaUUpRoFU0kAWgWR0CcR5xNIsiCdX2UKGgGaAloD0MIdmwE4jVqcECUhpRSlGgVTT0BaBZHQJxILaQFLWZ1fZQoaAZoCWgPQwjAX8yWrFRwQJSGlFKUaBVNSQFoFkdAnEg38n/kvXV9lChoBmgJaA9DCJVIopfRuW9AlIaUUpRoFU0wAWgWR0CcSPBBzFMqdX2UKGgGaAloD0MId2SsNn/fbkCUhpRSlGgVTUIBaBZHQJxLMazeGfx1fZQoaAZoCWgPQwgdO6jEtc5xQJSGlFKUaBVNNAFoFkdAnEvLq6e5F3V9lChoBmgJaA9DCPPGSWFeGHBAlIaUUpRoFU0nAWgWR0CcTAJN0vGqdX2UKGgGaAloD0MIZvZ5jDJzcUCUhpRSlGgVTToBaBZHQJxMuS4e9zx1fZQoaAZoCWgPQwh9W7BUF/ZyQJSGlFKUaBVNHwFoFkdAnE28cZLqU3V9lChoBmgJaA9DCNtMhXhkOnBAlIaUUpRoFU0pAWgWR0CcTjywwCbMdX2UKGgGaAloD0MI7Ulgcw4fbUCUhpRSlGgVTVoBaBZHQJxPGlrM1TB1fZQoaAZoCWgPQwhMGM3K9oNxQJSGlFKUaBVNJgFoFkdAnE9Nxp+MInV9lChoBmgJaA9DCChk521s321AlIaUUpRoFU0yAWgWR0CcT1nmaH9FdX2UKGgGaAloD0MIPPceLrnvb0CUhpRSlGgVTTEBaBZHQJxPfk/8l5Z1fZQoaAZoCWgPQwjXijbHuc9uQJSGlFKUaBVNNQFoFkdAnFA2d7OVxHV9lChoBmgJaA9DCBTLLa2Gh21AlIaUUpRoFU01AWgWR0CcUQgVGkN4dX2UKGgGaAloD0MIr1sExnqQcECUhpRSlGgVTRABaBZHQJxRQrpaA4J1fZQoaAZoCWgPQwhDqb2INkZxQJSGlFKUaBVNIwFoFkdAnFFSuU2UCHV9lChoBmgJaA9DCMR3YtYL4W9AlIaUUpRoFU0jAWgWR0CcZOg1WKdhdX2UKGgGaAloD0MICqLuA1CccUCUhpRSlGgVTS0BaBZHQJxlyqJdjXp1fZQoaAZoCWgPQwhxPQrXI/dwQJSGlFKUaBVNIAFoFkdAnGdqol2NenV9lChoBmgJaA9DCERtG0ZBRnJAlIaUUpRoFU0dAWgWR0CcZ9jyFwkxdX2UKGgGaAloD0MIpU+r6A8GckCUhpRSlGgVTRkBaBZHQJxpnJSzgMt1fZQoaAZoCWgPQwgAqyNHelBxQJSGlFKUaBVNIQFoFkdAnGtX+MqBmXV9lChoBmgJaA9DCItrfCb7eXBAlIaUUpRoFU03AWgWR0Cca1lQuVX4dX2UKGgGaAloD0MINzRlp5+3bkCUhpRSlGgVTSgBaBZHQJxr2sr/bTN1fZQoaAZoCWgPQwg3je21oI1vQJSGlFKUaBVNQAFoFkdAnGyqo2n89HV9lChoBmgJaA9DCMpPqn261W5AlIaUUpRoFU1TAWgWR0CcbYG+bmU4dX2UKGgGaAloD0MIIenTKnobb0CUhpRSlGgVTUUBaBZHQJxt0qNIbwV1fZQoaAZoCWgPQwhBYVCmEQpyQJSGlFKUaBVNNQFoFkdAnG4tW+49YHV9lChoBmgJaA9DCKj/rPmx0XFAlIaUUpRoFU0vAWgWR0CcbkxsEaESdX2UKGgGaAloD0MIH7+36U8mcUCUhpRSlGgVTScBaBZHQJxumHaews51fZQoaAZoCWgPQwitwfuq3GVwQJSGlFKUaBVNLAFoFkdAnG/VKoQ4CXV9lChoBmgJaA9DCEvkgjN4/3FAlIaUUpRoFU1OAWgWR0CcctR0EHMVdX2UKGgGaAloD0MIXaj8a/nvbECUhpRSlGgVTUsCaBZHQJxzNF8XvYx1fZQoaAZoCWgPQwje/8cJE/ZxQJSGlFKUaBVNTgFoFkdAnHNZ8WsRx3V9lChoBmgJaA9DCNWvdD48eXBAlIaUUpRoFU0pAWgWR0Ccc/P4mCyydX2UKGgGaAloD0MIA5gycICycUCUhpRSlGgVTSgBaBZHQJx1dIg/1QJ1fZQoaAZoCWgPQwhHdqVlpFBtQJSGlFKUaBVNFQJoFkdAnHYHXI2fkHV9lChoBmgJaA9DCPdWJCao2W1AlIaUUpRoFU06AWgWR0CcdhpmVZ9vdX2UKGgGaAloD0MIuTMTDKc6cECUhpRSlGgVTTEBaBZHQJx2POY6XBx1fZQoaAZoCWgPQwiOHyqNGOdwQJSGlFKUaBVNBwFoFkdAnHZhrFfiP3V9lChoBmgJaA9DCCEiNe3iIXFAlIaUUpRoFU0gAWgWR0CceHIppeu3dX2UKGgGaAloD0MIWd/A5MbvcECUhpRSlGgVTUIBaBZHQJx4yq94/u91fZQoaAZoCWgPQwhDIJc4cp1vQJSGlFKUaBVNOQFoFkdAnHjeuRs/IXV9lChoBmgJaA9DCFg5tMh2NG1AlIaUUpRoFU0XAWgWR0CceYtI065odX2UKGgGaAloD0MIpkboZ+p2ckCUhpRSlGgVTZcBaBZHQJx8TT+ee4F1fZQoaAZoCWgPQwiEZ0KTRONvQJSGlFKUaBVNFQFoFkdAnH0Mh1Tzd3V9lChoBmgJaA9DCBN9PsoI4nBAlIaUUpRoFU0kAWgWR0CcfUf6GgzydX2UKGgGaAloD0MICWzOwbPNbkCUhpRSlGgVTSIBaBZHQJx+TokiUxF1fZQoaAZoCWgPQwh/Ep87wSJvQJSGlFKUaBVNOQFoFkdAnH6LZWaMJnV9lChoBmgJaA9DCMDqyJHO5G5AlIaUUpRoFU0PAWgWR0CcfyoK2KEWdX2UKGgGaAloD0MIomDGFCxpbECUhpRSlGgVTQcBaBZHQJx/qA4GUwB1fZQoaAZoCWgPQwhHWipvRz5yQJSGlFKUaBVNFgFoFkdAnIAHokiUxHV9lChoBmgJaA9DCCNnYU97qXFAlIaUUpRoFU0VAWgWR0CcgEsZpBX0dX2UKGgGaAloD0MInigJiXRtcUCUhpRSlGgVTSUBaBZHQJyAeIwdsBR1fZQoaAZoCWgPQwi/DMaIRNRcQJSGlFKUaBVN6ANoFkdAnIEOHi3ocXV9lChoBmgJaA9DCHmu78NBw3BAlIaUUpRoFU0RAWgWR0CcgeaaCtihdX2UKGgGaAloD0MIy9WPTfJxbUCUhpRSlGgVTSMBaBZHQJyCuAZsKsx1fZQoaAZoCWgPQwhyFYvfFHFxQJSGlFKUaBVNMQFoFkdAnIPAWFev6nV9lChoBmgJaA9DCOJbWDfeEnFAlIaUUpRoFU3RAmgWR0CchQTa0x/NdX2UKGgGaAloD0MI9DehEAEKcECUhpRSlGgVTRYBaBZHQJyFcqFyq+91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d29eece88adfa52e586e4815ae9365dc43c05c9bb0a0426a70fedcbcb8d82433
3
+ size 147210
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e23fad670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e23fad700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e23fad790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e23fad820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3e23fad8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3e23fad940>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e23fad9d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3e23fada60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e23fadaf0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e23fadb80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e23fadc10>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3e23fa2e70>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670708728562843488,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqmt71//sk+bpjFPdJViL5VaRG9AEhdPQAAAAAAAAAAOoQuvsV4fz+VYIi+O7i6vkCWpL7mg6m9AAAAAAAAAADz8y6+1EsVP0roCT7zQ5G+1pyPvQiP8j0AAAAAAAAAAE3BWT1ch0W6qjRlOncM4rSTbJu7U4iHuQAAgD8AAIA/4BBiPpStIr1TDF87qdEXuj5ekb4GL+O6AACAPwAAgD9acem9NCQIPhJ0Mz3WxsW904WEvSW1j70AAAAAAAAAANpHjb2AJvE+PfmMPUwFhr7fmvo8Bp1fPAAAAAAAAAAA88TWvfUJUj7/XRc+sV13vmfDozxTOXq8AAAAAAAAAACaz0w9dqsUvKKyaDzStBY96wZ+PSj3870AAIA/AACAP/MpAT6xlgg8gFHGvHZ28r2/5pO7nldCPgAAAAAAAAAAzUqrvEhTgrpW12y6JiFmteA7mro2KYo5AACAPwAAgD+akpC8nKUjvB7Z3j1FlTy9Yi8Cu1NlEr0AAIA/AACAP80pPz1FUP88hDwHvbG5ab5oQw891O46vQAAAAAAAAAAsz3bPSRUnT9rvO09EpXIvhDeAj5HoxG9AAAAAAAAAADNkDW8eyazumWWpjbmK6oxCZ2IOfaywrUAAIA/AACAPwDwljzpxBg9j7mBvJqi770K1P+8kCSXPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadYZHcUCUhpRSlIwBbJRNWgGMAXSUR0CcMlBmf5DadX2UKGgGaAloD0MIpP0PsJbtcUCUhpRSlGgVS/poFkdAnDJ+o5xR23V9lChoBmgJaA9DCATo9/2bh29AlIaUUpRoFU17AWgWR0CcM9czImw8dX2UKGgGaAloD0MI2sU0072AQUCUhpRSlGgVS+BoFkdAnDRzCDVYp3V9lChoBmgJaA9DCFmGONYFuHBAlIaUUpRoFUvzaBZHQJw0nTy8SPF1fZQoaAZoCWgPQwhGlWHcTUxyQJSGlFKUaBVNXQFoFkdAnDUJ9ZzPr3V9lChoBmgJaA9DCJ29M9qquHBAlIaUUpRoFU0hAWgWR0CcNYYc/+sHdX2UKGgGaAloD0MIZeHra90fcUCUhpRSlGgVTSQBaBZHQJw2J8+iaiN1fZQoaAZoCWgPQwhw0clSq7RxQJSGlFKUaBVN4wFoFkdAnDZkfPomonV9lChoBmgJaA9DCKrukc3Vv29AlIaUUpRoFU1DAWgWR0CcNv8La24NdX2UKGgGaAloD0MIeJeL+A5icUCUhpRSlGgVTVsBaBZHQJw4hPTG5tp1fZQoaAZoCWgPQwgX2c73U9tuQJSGlFKUaBVNTwFoFkdAnDimCiAUcnV9lChoBmgJaA9DCEevBijNOXBAlIaUUpRoFU0PAWgWR0CcOf5EMLF5dX2UKGgGaAloD0MIvqCFBIyccECUhpRSlGgVTQoBaBZHQJw6UOYplSV1fZQoaAZoCWgPQwivmBHenpxvQJSGlFKUaBVNPgFoFkdAnDq6E384xXV9lChoBmgJaA9DCHNMFvefv29AlIaUUpRoFU0/AWgWR0CcO2gRbr1NdX2UKGgGaAloD0MIUg/R6A6mcECUhpRSlGgVTTcBaBZHQJw8EsBhhH91fZQoaAZoCWgPQwgJ+3YSEYxxQJSGlFKUaBVNFwFoFkdAnDxOaWom5XV9lChoBmgJaA9DCGJqSx3kdSpAlIaUUpRoFUv0aBZHQJw81ATqSox1fZQoaAZoCWgPQwgz3eukvm9xQJSGlFKUaBVNGwFoFkdAnDz3o1UEPnV9lChoBmgJaA9DCATidf0CcGxAlIaUUpRoFU10AWgWR0CcPbQEIPbxdX2UKGgGaAloD0MIshNeghM0ckCUhpRSlGgVS/RoFkdAnD5RwZOzp3V9lChoBmgJaA9DCFoRNdGnLHBAlIaUUpRoFU0+AWgWR0CcPn0WdmQKdX2UKGgGaAloD0MIw7zHmSZUckCUhpRSlGgVTRYBaBZHQJw+netSydF1fZQoaAZoCWgPQwj/kenQaRFvQJSGlFKUaBVNWAFoFkdAnD7SflIVd3V9lChoBmgJaA9DCH8yxofZK3BAlIaUUpRoFU1GAWgWR0CcP40PpY9xdX2UKGgGaAloD0MI1ljC2hhmcECUhpRSlGgVTSABaBZHQJxA5AHE/B51fZQoaAZoCWgPQwiN0xBV+GtMQJSGlFKUaBVL0GgWR0CcQciFj/dZdX2UKGgGaAloD0MIuW+1ThxJcUCUhpRSlGgVTScBaBZHQJxCbux8lX11fZQoaAZoCWgPQwjcL5+sGNBCQJSGlFKUaBVL/WgWR0CcQod2Pkq+dX2UKGgGaAloD0MIUU1J1mGBb0CUhpRSlGgVTUEBaBZHQJxDnoW56MR1fZQoaAZoCWgPQwiZDp2et5BxQJSGlFKUaBVNTAFoFkdAnESBYeT3ZnV9lChoBmgJaA9DCKn6lc4HRnBAlIaUUpRoFU2UAWgWR0CcRJ0jC53DdX2UKGgGaAloD0MIDRgkfRqjcECUhpRSlGgVTRcBaBZHQJxFO5Yoy9F1fZQoaAZoCWgPQwidnKG4o3VxQJSGlFKUaBVNAgFoFkdAnEVhfShJy3V9lChoBmgJaA9DCD3RdeEHWG5AlIaUUpRoFU04AWgWR0CcRZCXyAhCdX2UKGgGaAloD0MInDI330jackCUhpRSlGgVTTQBaBZHQJxF8Y64lQd1fZQoaAZoCWgPQwhCeoocokVxQJSGlFKUaBVNFQFoFkdAnEa/kili0HV9lChoBmgJaA9DCCS3Jt3WlHBAlIaUUpRoFU0kAWgWR0CcR5xNIsiCdX2UKGgGaAloD0MIdmwE4jVqcECUhpRSlGgVTT0BaBZHQJxILaQFLWZ1fZQoaAZoCWgPQwjAX8yWrFRwQJSGlFKUaBVNSQFoFkdAnEg38n/kvXV9lChoBmgJaA9DCJVIopfRuW9AlIaUUpRoFU0wAWgWR0CcSPBBzFMqdX2UKGgGaAloD0MId2SsNn/fbkCUhpRSlGgVTUIBaBZHQJxLMazeGfx1fZQoaAZoCWgPQwgdO6jEtc5xQJSGlFKUaBVNNAFoFkdAnEvLq6e5F3V9lChoBmgJaA9DCPPGSWFeGHBAlIaUUpRoFU0nAWgWR0CcTAJN0vGqdX2UKGgGaAloD0MIZvZ5jDJzcUCUhpRSlGgVTToBaBZHQJxMuS4e9zx1fZQoaAZoCWgPQwh9W7BUF/ZyQJSGlFKUaBVNHwFoFkdAnE28cZLqU3V9lChoBmgJaA9DCNtMhXhkOnBAlIaUUpRoFU0pAWgWR0CcTjywwCbMdX2UKGgGaAloD0MI7Ulgcw4fbUCUhpRSlGgVTVoBaBZHQJxPGlrM1TB1fZQoaAZoCWgPQwhMGM3K9oNxQJSGlFKUaBVNJgFoFkdAnE9Nxp+MInV9lChoBmgJaA9DCChk521s321AlIaUUpRoFU0yAWgWR0CcT1nmaH9FdX2UKGgGaAloD0MIPPceLrnvb0CUhpRSlGgVTTEBaBZHQJxPfk/8l5Z1fZQoaAZoCWgPQwjXijbHuc9uQJSGlFKUaBVNNQFoFkdAnFA2d7OVxHV9lChoBmgJaA9DCBTLLa2Gh21AlIaUUpRoFU01AWgWR0CcUQgVGkN4dX2UKGgGaAloD0MIr1sExnqQcECUhpRSlGgVTRABaBZHQJxRQrpaA4J1fZQoaAZoCWgPQwhDqb2INkZxQJSGlFKUaBVNIwFoFkdAnFFSuU2UCHV9lChoBmgJaA9DCMR3YtYL4W9AlIaUUpRoFU0jAWgWR0CcZOg1WKdhdX2UKGgGaAloD0MICqLuA1CccUCUhpRSlGgVTS0BaBZHQJxlyqJdjXp1fZQoaAZoCWgPQwhxPQrXI/dwQJSGlFKUaBVNIAFoFkdAnGdqol2NenV9lChoBmgJaA9DCERtG0ZBRnJAlIaUUpRoFU0dAWgWR0CcZ9jyFwkxdX2UKGgGaAloD0MIpU+r6A8GckCUhpRSlGgVTRkBaBZHQJxpnJSzgMt1fZQoaAZoCWgPQwgAqyNHelBxQJSGlFKUaBVNIQFoFkdAnGtX+MqBmXV9lChoBmgJaA9DCItrfCb7eXBAlIaUUpRoFU03AWgWR0Cca1lQuVX4dX2UKGgGaAloD0MINzRlp5+3bkCUhpRSlGgVTSgBaBZHQJxr2sr/bTN1fZQoaAZoCWgPQwg3je21oI1vQJSGlFKUaBVNQAFoFkdAnGyqo2n89HV9lChoBmgJaA9DCMpPqn261W5AlIaUUpRoFU1TAWgWR0CcbYG+bmU4dX2UKGgGaAloD0MIIenTKnobb0CUhpRSlGgVTUUBaBZHQJxt0qNIbwV1fZQoaAZoCWgPQwhBYVCmEQpyQJSGlFKUaBVNNQFoFkdAnG4tW+49YHV9lChoBmgJaA9DCKj/rPmx0XFAlIaUUpRoFU0vAWgWR0CcbkxsEaESdX2UKGgGaAloD0MIH7+36U8mcUCUhpRSlGgVTScBaBZHQJxumHaews51fZQoaAZoCWgPQwitwfuq3GVwQJSGlFKUaBVNLAFoFkdAnG/VKoQ4CXV9lChoBmgJaA9DCEvkgjN4/3FAlIaUUpRoFU1OAWgWR0CcctR0EHMVdX2UKGgGaAloD0MIXaj8a/nvbECUhpRSlGgVTUsCaBZHQJxzNF8XvYx1fZQoaAZoCWgPQwje/8cJE/ZxQJSGlFKUaBVNTgFoFkdAnHNZ8WsRx3V9lChoBmgJaA9DCNWvdD48eXBAlIaUUpRoFU0pAWgWR0Ccc/P4mCyydX2UKGgGaAloD0MIA5gycICycUCUhpRSlGgVTSgBaBZHQJx1dIg/1QJ1fZQoaAZoCWgPQwhHdqVlpFBtQJSGlFKUaBVNFQJoFkdAnHYHXI2fkHV9lChoBmgJaA9DCPdWJCao2W1AlIaUUpRoFU06AWgWR0CcdhpmVZ9vdX2UKGgGaAloD0MIuTMTDKc6cECUhpRSlGgVTTEBaBZHQJx2POY6XBx1fZQoaAZoCWgPQwiOHyqNGOdwQJSGlFKUaBVNBwFoFkdAnHZhrFfiP3V9lChoBmgJaA9DCCEiNe3iIXFAlIaUUpRoFU0gAWgWR0CceHIppeu3dX2UKGgGaAloD0MIWd/A5MbvcECUhpRSlGgVTUIBaBZHQJx4yq94/u91fZQoaAZoCWgPQwhDIJc4cp1vQJSGlFKUaBVNOQFoFkdAnHjeuRs/IXV9lChoBmgJaA9DCFg5tMh2NG1AlIaUUpRoFU0XAWgWR0CceYtI065odX2UKGgGaAloD0MIpkboZ+p2ckCUhpRSlGgVTZcBaBZHQJx8TT+ee4F1fZQoaAZoCWgPQwiEZ0KTRONvQJSGlFKUaBVNFQFoFkdAnH0Mh1Tzd3V9lChoBmgJaA9DCBN9PsoI4nBAlIaUUpRoFU0kAWgWR0CcfUf6GgzydX2UKGgGaAloD0MICWzOwbPNbkCUhpRSlGgVTSIBaBZHQJx+TokiUxF1fZQoaAZoCWgPQwh/Ep87wSJvQJSGlFKUaBVNOQFoFkdAnH6LZWaMJnV9lChoBmgJaA9DCMDqyJHO5G5AlIaUUpRoFU0PAWgWR0CcfyoK2KEWdX2UKGgGaAloD0MIomDGFCxpbECUhpRSlGgVTQcBaBZHQJx/qA4GUwB1fZQoaAZoCWgPQwhHWipvRz5yQJSGlFKUaBVNFgFoFkdAnIAHokiUxHV9lChoBmgJaA9DCCNnYU97qXFAlIaUUpRoFU0VAWgWR0CcgEsZpBX0dX2UKGgGaAloD0MInigJiXRtcUCUhpRSlGgVTSUBaBZHQJyAeIwdsBR1fZQoaAZoCWgPQwi/DMaIRNRcQJSGlFKUaBVN6ANoFkdAnIEOHi3ocXV9lChoBmgJaA9DCHmu78NBw3BAlIaUUpRoFU0RAWgWR0CcgeaaCtihdX2UKGgGaAloD0MIy9WPTfJxbUCUhpRSlGgVTSMBaBZHQJyCuAZsKsx1fZQoaAZoCWgPQwhyFYvfFHFxQJSGlFKUaBVNMQFoFkdAnIPAWFev6nV9lChoBmgJaA9DCOJbWDfeEnFAlIaUUpRoFU3RAmgWR0CchQTa0x/NdX2UKGgGaAloD0MI9DehEAEKcECUhpRSlGgVTRYBaBZHQJyFcqFyq+91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7371905add2eb74588cd3d44480ae4870558b721296537b5f2ac3b1080c11b1b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160ea85c97ccd42076adef3d2a789e114c78fb9bbf87bbe0765b9a67ea1e0260
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (206 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.16936042886596, "std_reward": 20.276622431352003, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T22:33:22.695645"}