CanadaKasper
commited on
Commit
·
f8fb8aa
1
Parent(s):
33792eb
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.17 +/- 20.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e23fad670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e23fad700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e23fad790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e23fad820>", "_build": "<function ActorCriticPolicy._build at 0x7f3e23fad8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3e23fad940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e23fad9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3e23fada60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e23fadaf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e23fadb80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e23fadc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e23fa2e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670708728562843488, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqmt71//sk+bpjFPdJViL5VaRG9AEhdPQAAAAAAAAAAOoQuvsV4fz+VYIi+O7i6vkCWpL7mg6m9AAAAAAAAAADz8y6+1EsVP0roCT7zQ5G+1pyPvQiP8j0AAAAAAAAAAE3BWT1ch0W6qjRlOncM4rSTbJu7U4iHuQAAgD8AAIA/4BBiPpStIr1TDF87qdEXuj5ekb4GL+O6AACAPwAAgD9acem9NCQIPhJ0Mz3WxsW904WEvSW1j70AAAAAAAAAANpHjb2AJvE+PfmMPUwFhr7fmvo8Bp1fPAAAAAAAAAAA88TWvfUJUj7/XRc+sV13vmfDozxTOXq8AAAAAAAAAACaz0w9dqsUvKKyaDzStBY96wZ+PSj3870AAIA/AACAP/MpAT6xlgg8gFHGvHZ28r2/5pO7nldCPgAAAAAAAAAAzUqrvEhTgrpW12y6JiFmteA7mro2KYo5AACAPwAAgD+akpC8nKUjvB7Z3j1FlTy9Yi8Cu1NlEr0AAIA/AACAP80pPz1FUP88hDwHvbG5ab5oQw891O46vQAAAAAAAAAAsz3bPSRUnT9rvO09EpXIvhDeAj5HoxG9AAAAAAAAAADNkDW8eyazumWWpjbmK6oxCZ2IOfaywrUAAIA/AACAPwDwljzpxBg9j7mBvJqi770K1P+8kCSXPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadYZHcUCUhpRSlIwBbJRNWgGMAXSUR0CcMlBmf5DadX2UKGgGaAloD0MIpP0PsJbtcUCUhpRSlGgVS/poFkdAnDJ+o5xR23V9lChoBmgJaA9DCATo9/2bh29AlIaUUpRoFU17AWgWR0CcM9czImw8dX2UKGgGaAloD0MI2sU0072AQUCUhpRSlGgVS+BoFkdAnDRzCDVYp3V9lChoBmgJaA9DCFmGONYFuHBAlIaUUpRoFUvzaBZHQJw0nTy8SPF1fZQoaAZoCWgPQwhGlWHcTUxyQJSGlFKUaBVNXQFoFkdAnDUJ9ZzPr3V9lChoBmgJaA9DCJ29M9qquHBAlIaUUpRoFU0hAWgWR0CcNYYc/+sHdX2UKGgGaAloD0MIZeHra90fcUCUhpRSlGgVTSQBaBZHQJw2J8+iaiN1fZQoaAZoCWgPQwhw0clSq7RxQJSGlFKUaBVN4wFoFkdAnDZkfPomonV9lChoBmgJaA9DCKrukc3Vv29AlIaUUpRoFU1DAWgWR0CcNv8La24NdX2UKGgGaAloD0MIeJeL+A5icUCUhpRSlGgVTVsBaBZHQJw4hPTG5tp1fZQoaAZoCWgPQwgX2c73U9tuQJSGlFKUaBVNTwFoFkdAnDimCiAUcnV9lChoBmgJaA9DCEevBijNOXBAlIaUUpRoFU0PAWgWR0CcOf5EMLF5dX2UKGgGaAloD0MIvqCFBIyccECUhpRSlGgVTQoBaBZHQJw6UOYplSV1fZQoaAZoCWgPQwivmBHenpxvQJSGlFKUaBVNPgFoFkdAnDq6E384xXV9lChoBmgJaA9DCHNMFvefv29AlIaUUpRoFU0/AWgWR0CcO2gRbr1NdX2UKGgGaAloD0MIUg/R6A6mcECUhpRSlGgVTTcBaBZHQJw8EsBhhH91fZQoaAZoCWgPQwgJ+3YSEYxxQJSGlFKUaBVNFwFoFkdAnDxOaWom5XV9lChoBmgJaA9DCGJqSx3kdSpAlIaUUpRoFUv0aBZHQJw81ATqSox1fZQoaAZoCWgPQwgz3eukvm9xQJSGlFKUaBVNGwFoFkdAnDz3o1UEPnV9lChoBmgJaA9DCATidf0CcGxAlIaUUpRoFU10AWgWR0CcPbQEIPbxdX2UKGgGaAloD0MIshNeghM0ckCUhpRSlGgVS/RoFkdAnD5RwZOzp3V9lChoBmgJaA9DCFoRNdGnLHBAlIaUUpRoFU0+AWgWR0CcPn0WdmQKdX2UKGgGaAloD0MIw7zHmSZUckCUhpRSlGgVTRYBaBZHQJw+netSydF1fZQoaAZoCWgPQwj/kenQaRFvQJSGlFKUaBVNWAFoFkdAnD7SflIVd3V9lChoBmgJaA9DCH8yxofZK3BAlIaUUpRoFU1GAWgWR0CcP40PpY9xdX2UKGgGaAloD0MI1ljC2hhmcECUhpRSlGgVTSABaBZHQJxA5AHE/B51fZQoaAZoCWgPQwiN0xBV+GtMQJSGlFKUaBVL0GgWR0CcQciFj/dZdX2UKGgGaAloD0MIuW+1ThxJcUCUhpRSlGgVTScBaBZHQJxCbux8lX11fZQoaAZoCWgPQwjcL5+sGNBCQJSGlFKUaBVL/WgWR0CcQod2Pkq+dX2UKGgGaAloD0MIUU1J1mGBb0CUhpRSlGgVTUEBaBZHQJxDnoW56MR1fZQoaAZoCWgPQwiZDp2et5BxQJSGlFKUaBVNTAFoFkdAnESBYeT3ZnV9lChoBmgJaA9DCKn6lc4HRnBAlIaUUpRoFU2UAWgWR0CcRJ0jC53DdX2UKGgGaAloD0MIDRgkfRqjcECUhpRSlGgVTRcBaBZHQJxFO5Yoy9F1fZQoaAZoCWgPQwidnKG4o3VxQJSGlFKUaBVNAgFoFkdAnEVhfShJy3V9lChoBmgJaA9DCD3RdeEHWG5AlIaUUpRoFU04AWgWR0CcRZCXyAhCdX2UKGgGaAloD0MInDI330jackCUhpRSlGgVTTQBaBZHQJxF8Y64lQd1fZQoaAZoCWgPQwhCeoocokVxQJSGlFKUaBVNFQFoFkdAnEa/kili0HV9lChoBmgJaA9DCCS3Jt3WlHBAlIaUUpRoFU0kAWgWR0CcR5xNIsiCdX2UKGgGaAloD0MIdmwE4jVqcECUhpRSlGgVTT0BaBZHQJxILaQFLWZ1fZQoaAZoCWgPQwjAX8yWrFRwQJSGlFKUaBVNSQFoFkdAnEg38n/kvXV9lChoBmgJaA9DCJVIopfRuW9AlIaUUpRoFU0wAWgWR0CcSPBBzFMqdX2UKGgGaAloD0MId2SsNn/fbkCUhpRSlGgVTUIBaBZHQJxLMazeGfx1fZQoaAZoCWgPQwgdO6jEtc5xQJSGlFKUaBVNNAFoFkdAnEvLq6e5F3V9lChoBmgJaA9DCPPGSWFeGHBAlIaUUpRoFU0nAWgWR0CcTAJN0vGqdX2UKGgGaAloD0MIZvZ5jDJzcUCUhpRSlGgVTToBaBZHQJxMuS4e9zx1fZQoaAZoCWgPQwh9W7BUF/ZyQJSGlFKUaBVNHwFoFkdAnE28cZLqU3V9lChoBmgJaA9DCNtMhXhkOnBAlIaUUpRoFU0pAWgWR0CcTjywwCbMdX2UKGgGaAloD0MI7Ulgcw4fbUCUhpRSlGgVTVoBaBZHQJxPGlrM1TB1fZQoaAZoCWgPQwhMGM3K9oNxQJSGlFKUaBVNJgFoFkdAnE9Nxp+MInV9lChoBmgJaA9DCChk521s321AlIaUUpRoFU0yAWgWR0CcT1nmaH9FdX2UKGgGaAloD0MIPPceLrnvb0CUhpRSlGgVTTEBaBZHQJxPfk/8l5Z1fZQoaAZoCWgPQwjXijbHuc9uQJSGlFKUaBVNNQFoFkdAnFA2d7OVxHV9lChoBmgJaA9DCBTLLa2Gh21AlIaUUpRoFU01AWgWR0CcUQgVGkN4dX2UKGgGaAloD0MIr1sExnqQcECUhpRSlGgVTRABaBZHQJxRQrpaA4J1fZQoaAZoCWgPQwhDqb2INkZxQJSGlFKUaBVNIwFoFkdAnFFSuU2UCHV9lChoBmgJaA9DCMR3YtYL4W9AlIaUUpRoFU0jAWgWR0CcZOg1WKdhdX2UKGgGaAloD0MICqLuA1CccUCUhpRSlGgVTS0BaBZHQJxlyqJdjXp1fZQoaAZoCWgPQwhxPQrXI/dwQJSGlFKUaBVNIAFoFkdAnGdqol2NenV9lChoBmgJaA9DCERtG0ZBRnJAlIaUUpRoFU0dAWgWR0CcZ9jyFwkxdX2UKGgGaAloD0MIpU+r6A8GckCUhpRSlGgVTRkBaBZHQJxpnJSzgMt1fZQoaAZoCWgPQwgAqyNHelBxQJSGlFKUaBVNIQFoFkdAnGtX+MqBmXV9lChoBmgJaA9DCItrfCb7eXBAlIaUUpRoFU03AWgWR0Cca1lQuVX4dX2UKGgGaAloD0MINzRlp5+3bkCUhpRSlGgVTSgBaBZHQJxr2sr/bTN1fZQoaAZoCWgPQwg3je21oI1vQJSGlFKUaBVNQAFoFkdAnGyqo2n89HV9lChoBmgJaA9DCMpPqn261W5AlIaUUpRoFU1TAWgWR0CcbYG+bmU4dX2UKGgGaAloD0MIIenTKnobb0CUhpRSlGgVTUUBaBZHQJxt0qNIbwV1fZQoaAZoCWgPQwhBYVCmEQpyQJSGlFKUaBVNNQFoFkdAnG4tW+49YHV9lChoBmgJaA9DCKj/rPmx0XFAlIaUUpRoFU0vAWgWR0CcbkxsEaESdX2UKGgGaAloD0MIH7+36U8mcUCUhpRSlGgVTScBaBZHQJxumHaews51fZQoaAZoCWgPQwitwfuq3GVwQJSGlFKUaBVNLAFoFkdAnG/VKoQ4CXV9lChoBmgJaA9DCEvkgjN4/3FAlIaUUpRoFU1OAWgWR0CcctR0EHMVdX2UKGgGaAloD0MIXaj8a/nvbECUhpRSlGgVTUsCaBZHQJxzNF8XvYx1fZQoaAZoCWgPQwje/8cJE/ZxQJSGlFKUaBVNTgFoFkdAnHNZ8WsRx3V9lChoBmgJaA9DCNWvdD48eXBAlIaUUpRoFU0pAWgWR0Ccc/P4mCyydX2UKGgGaAloD0MIA5gycICycUCUhpRSlGgVTSgBaBZHQJx1dIg/1QJ1fZQoaAZoCWgPQwhHdqVlpFBtQJSGlFKUaBVNFQJoFkdAnHYHXI2fkHV9lChoBmgJaA9DCPdWJCao2W1AlIaUUpRoFU06AWgWR0CcdhpmVZ9vdX2UKGgGaAloD0MIuTMTDKc6cECUhpRSlGgVTTEBaBZHQJx2POY6XBx1fZQoaAZoCWgPQwiOHyqNGOdwQJSGlFKUaBVNBwFoFkdAnHZhrFfiP3V9lChoBmgJaA9DCCEiNe3iIXFAlIaUUpRoFU0gAWgWR0CceHIppeu3dX2UKGgGaAloD0MIWd/A5MbvcECUhpRSlGgVTUIBaBZHQJx4yq94/u91fZQoaAZoCWgPQwhDIJc4cp1vQJSGlFKUaBVNOQFoFkdAnHjeuRs/IXV9lChoBmgJaA9DCFg5tMh2NG1AlIaUUpRoFU0XAWgWR0CceYtI065odX2UKGgGaAloD0MIpkboZ+p2ckCUhpRSlGgVTZcBaBZHQJx8TT+ee4F1fZQoaAZoCWgPQwiEZ0KTRONvQJSGlFKUaBVNFQFoFkdAnH0Mh1Tzd3V9lChoBmgJaA9DCBN9PsoI4nBAlIaUUpRoFU0kAWgWR0CcfUf6GgzydX2UKGgGaAloD0MICWzOwbPNbkCUhpRSlGgVTSIBaBZHQJx+TokiUxF1fZQoaAZoCWgPQwh/Ep87wSJvQJSGlFKUaBVNOQFoFkdAnH6LZWaMJnV9lChoBmgJaA9DCMDqyJHO5G5AlIaUUpRoFU0PAWgWR0CcfyoK2KEWdX2UKGgGaAloD0MIomDGFCxpbECUhpRSlGgVTQcBaBZHQJx/qA4GUwB1fZQoaAZoCWgPQwhHWipvRz5yQJSGlFKUaBVNFgFoFkdAnIAHokiUxHV9lChoBmgJaA9DCCNnYU97qXFAlIaUUpRoFU0VAWgWR0CcgEsZpBX0dX2UKGgGaAloD0MInigJiXRtcUCUhpRSlGgVTSUBaBZHQJyAeIwdsBR1fZQoaAZoCWgPQwi/DMaIRNRcQJSGlFKUaBVN6ANoFkdAnIEOHi3ocXV9lChoBmgJaA9DCHmu78NBw3BAlIaUUpRoFU0RAWgWR0CcgeaaCtihdX2UKGgGaAloD0MIy9WPTfJxbUCUhpRSlGgVTSMBaBZHQJyCuAZsKsx1fZQoaAZoCWgPQwhyFYvfFHFxQJSGlFKUaBVNMQFoFkdAnIPAWFev6nV9lChoBmgJaA9DCOJbWDfeEnFAlIaUUpRoFU3RAmgWR0CchQTa0x/NdX2UKGgGaAloD0MI9DehEAEKcECUhpRSlGgVTRYBaBZHQJyFcqFyq+91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d29eece88adfa52e586e4815ae9365dc43c05c9bb0a0426a70fedcbcb8d82433
|
3 |
+
size 147210
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e23fad670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e23fad700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e23fad790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e23fad820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3e23fad8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3e23fad940>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e23fad9d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3e23fada60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e23fadaf0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e23fadb80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e23fadc10>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3e23fa2e70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670708728562843488,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqmt71//sk+bpjFPdJViL5VaRG9AEhdPQAAAAAAAAAAOoQuvsV4fz+VYIi+O7i6vkCWpL7mg6m9AAAAAAAAAADz8y6+1EsVP0roCT7zQ5G+1pyPvQiP8j0AAAAAAAAAAE3BWT1ch0W6qjRlOncM4rSTbJu7U4iHuQAAgD8AAIA/4BBiPpStIr1TDF87qdEXuj5ekb4GL+O6AACAPwAAgD9acem9NCQIPhJ0Mz3WxsW904WEvSW1j70AAAAAAAAAANpHjb2AJvE+PfmMPUwFhr7fmvo8Bp1fPAAAAAAAAAAA88TWvfUJUj7/XRc+sV13vmfDozxTOXq8AAAAAAAAAACaz0w9dqsUvKKyaDzStBY96wZ+PSj3870AAIA/AACAP/MpAT6xlgg8gFHGvHZ28r2/5pO7nldCPgAAAAAAAAAAzUqrvEhTgrpW12y6JiFmteA7mro2KYo5AACAPwAAgD+akpC8nKUjvB7Z3j1FlTy9Yi8Cu1NlEr0AAIA/AACAP80pPz1FUP88hDwHvbG5ab5oQw891O46vQAAAAAAAAAAsz3bPSRUnT9rvO09EpXIvhDeAj5HoxG9AAAAAAAAAADNkDW8eyazumWWpjbmK6oxCZ2IOfaywrUAAIA/AACAPwDwljzpxBg9j7mBvJqi770K1P+8kCSXPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadYZHcUCUhpRSlIwBbJRNWgGMAXSUR0CcMlBmf5DadX2UKGgGaAloD0MIpP0PsJbtcUCUhpRSlGgVS/poFkdAnDJ+o5xR23V9lChoBmgJaA9DCATo9/2bh29AlIaUUpRoFU17AWgWR0CcM9czImw8dX2UKGgGaAloD0MI2sU0072AQUCUhpRSlGgVS+BoFkdAnDRzCDVYp3V9lChoBmgJaA9DCFmGONYFuHBAlIaUUpRoFUvzaBZHQJw0nTy8SPF1fZQoaAZoCWgPQwhGlWHcTUxyQJSGlFKUaBVNXQFoFkdAnDUJ9ZzPr3V9lChoBmgJaA9DCJ29M9qquHBAlIaUUpRoFU0hAWgWR0CcNYYc/+sHdX2UKGgGaAloD0MIZeHra90fcUCUhpRSlGgVTSQBaBZHQJw2J8+iaiN1fZQoaAZoCWgPQwhw0clSq7RxQJSGlFKUaBVN4wFoFkdAnDZkfPomonV9lChoBmgJaA9DCKrukc3Vv29AlIaUUpRoFU1DAWgWR0CcNv8La24NdX2UKGgGaAloD0MIeJeL+A5icUCUhpRSlGgVTVsBaBZHQJw4hPTG5tp1fZQoaAZoCWgPQwgX2c73U9tuQJSGlFKUaBVNTwFoFkdAnDimCiAUcnV9lChoBmgJaA9DCEevBijNOXBAlIaUUpRoFU0PAWgWR0CcOf5EMLF5dX2UKGgGaAloD0MIvqCFBIyccECUhpRSlGgVTQoBaBZHQJw6UOYplSV1fZQoaAZoCWgPQwivmBHenpxvQJSGlFKUaBVNPgFoFkdAnDq6E384xXV9lChoBmgJaA9DCHNMFvefv29AlIaUUpRoFU0/AWgWR0CcO2gRbr1NdX2UKGgGaAloD0MIUg/R6A6mcECUhpRSlGgVTTcBaBZHQJw8EsBhhH91fZQoaAZoCWgPQwgJ+3YSEYxxQJSGlFKUaBVNFwFoFkdAnDxOaWom5XV9lChoBmgJaA9DCGJqSx3kdSpAlIaUUpRoFUv0aBZHQJw81ATqSox1fZQoaAZoCWgPQwgz3eukvm9xQJSGlFKUaBVNGwFoFkdAnDz3o1UEPnV9lChoBmgJaA9DCATidf0CcGxAlIaUUpRoFU10AWgWR0CcPbQEIPbxdX2UKGgGaAloD0MIshNeghM0ckCUhpRSlGgVS/RoFkdAnD5RwZOzp3V9lChoBmgJaA9DCFoRNdGnLHBAlIaUUpRoFU0+AWgWR0CcPn0WdmQKdX2UKGgGaAloD0MIw7zHmSZUckCUhpRSlGgVTRYBaBZHQJw+netSydF1fZQoaAZoCWgPQwj/kenQaRFvQJSGlFKUaBVNWAFoFkdAnD7SflIVd3V9lChoBmgJaA9DCH8yxofZK3BAlIaUUpRoFU1GAWgWR0CcP40PpY9xdX2UKGgGaAloD0MI1ljC2hhmcECUhpRSlGgVTSABaBZHQJxA5AHE/B51fZQoaAZoCWgPQwiN0xBV+GtMQJSGlFKUaBVL0GgWR0CcQciFj/dZdX2UKGgGaAloD0MIuW+1ThxJcUCUhpRSlGgVTScBaBZHQJxCbux8lX11fZQoaAZoCWgPQwjcL5+sGNBCQJSGlFKUaBVL/WgWR0CcQod2Pkq+dX2UKGgGaAloD0MIUU1J1mGBb0CUhpRSlGgVTUEBaBZHQJxDnoW56MR1fZQoaAZoCWgPQwiZDp2et5BxQJSGlFKUaBVNTAFoFkdAnESBYeT3ZnV9lChoBmgJaA9DCKn6lc4HRnBAlIaUUpRoFU2UAWgWR0CcRJ0jC53DdX2UKGgGaAloD0MIDRgkfRqjcECUhpRSlGgVTRcBaBZHQJxFO5Yoy9F1fZQoaAZoCWgPQwidnKG4o3VxQJSGlFKUaBVNAgFoFkdAnEVhfShJy3V9lChoBmgJaA9DCD3RdeEHWG5AlIaUUpRoFU04AWgWR0CcRZCXyAhCdX2UKGgGaAloD0MInDI330jackCUhpRSlGgVTTQBaBZHQJxF8Y64lQd1fZQoaAZoCWgPQwhCeoocokVxQJSGlFKUaBVNFQFoFkdAnEa/kili0HV9lChoBmgJaA9DCCS3Jt3WlHBAlIaUUpRoFU0kAWgWR0CcR5xNIsiCdX2UKGgGaAloD0MIdmwE4jVqcECUhpRSlGgVTT0BaBZHQJxILaQFLWZ1fZQoaAZoCWgPQwjAX8yWrFRwQJSGlFKUaBVNSQFoFkdAnEg38n/kvXV9lChoBmgJaA9DCJVIopfRuW9AlIaUUpRoFU0wAWgWR0CcSPBBzFMqdX2UKGgGaAloD0MId2SsNn/fbkCUhpRSlGgVTUIBaBZHQJxLMazeGfx1fZQoaAZoCWgPQwgdO6jEtc5xQJSGlFKUaBVNNAFoFkdAnEvLq6e5F3V9lChoBmgJaA9DCPPGSWFeGHBAlIaUUpRoFU0nAWgWR0CcTAJN0vGqdX2UKGgGaAloD0MIZvZ5jDJzcUCUhpRSlGgVTToBaBZHQJxMuS4e9zx1fZQoaAZoCWgPQwh9W7BUF/ZyQJSGlFKUaBVNHwFoFkdAnE28cZLqU3V9lChoBmgJaA9DCNtMhXhkOnBAlIaUUpRoFU0pAWgWR0CcTjywwCbMdX2UKGgGaAloD0MI7Ulgcw4fbUCUhpRSlGgVTVoBaBZHQJxPGlrM1TB1fZQoaAZoCWgPQwhMGM3K9oNxQJSGlFKUaBVNJgFoFkdAnE9Nxp+MInV9lChoBmgJaA9DCChk521s321AlIaUUpRoFU0yAWgWR0CcT1nmaH9FdX2UKGgGaAloD0MIPPceLrnvb0CUhpRSlGgVTTEBaBZHQJxPfk/8l5Z1fZQoaAZoCWgPQwjXijbHuc9uQJSGlFKUaBVNNQFoFkdAnFA2d7OVxHV9lChoBmgJaA9DCBTLLa2Gh21AlIaUUpRoFU01AWgWR0CcUQgVGkN4dX2UKGgGaAloD0MIr1sExnqQcECUhpRSlGgVTRABaBZHQJxRQrpaA4J1fZQoaAZoCWgPQwhDqb2INkZxQJSGlFKUaBVNIwFoFkdAnFFSuU2UCHV9lChoBmgJaA9DCMR3YtYL4W9AlIaUUpRoFU0jAWgWR0CcZOg1WKdhdX2UKGgGaAloD0MICqLuA1CccUCUhpRSlGgVTS0BaBZHQJxlyqJdjXp1fZQoaAZoCWgPQwhxPQrXI/dwQJSGlFKUaBVNIAFoFkdAnGdqol2NenV9lChoBmgJaA9DCERtG0ZBRnJAlIaUUpRoFU0dAWgWR0CcZ9jyFwkxdX2UKGgGaAloD0MIpU+r6A8GckCUhpRSlGgVTRkBaBZHQJxpnJSzgMt1fZQoaAZoCWgPQwgAqyNHelBxQJSGlFKUaBVNIQFoFkdAnGtX+MqBmXV9lChoBmgJaA9DCItrfCb7eXBAlIaUUpRoFU03AWgWR0Cca1lQuVX4dX2UKGgGaAloD0MINzRlp5+3bkCUhpRSlGgVTSgBaBZHQJxr2sr/bTN1fZQoaAZoCWgPQwg3je21oI1vQJSGlFKUaBVNQAFoFkdAnGyqo2n89HV9lChoBmgJaA9DCMpPqn261W5AlIaUUpRoFU1TAWgWR0CcbYG+bmU4dX2UKGgGaAloD0MIIenTKnobb0CUhpRSlGgVTUUBaBZHQJxt0qNIbwV1fZQoaAZoCWgPQwhBYVCmEQpyQJSGlFKUaBVNNQFoFkdAnG4tW+49YHV9lChoBmgJaA9DCKj/rPmx0XFAlIaUUpRoFU0vAWgWR0CcbkxsEaESdX2UKGgGaAloD0MIH7+36U8mcUCUhpRSlGgVTScBaBZHQJxumHaews51fZQoaAZoCWgPQwitwfuq3GVwQJSGlFKUaBVNLAFoFkdAnG/VKoQ4CXV9lChoBmgJaA9DCEvkgjN4/3FAlIaUUpRoFU1OAWgWR0CcctR0EHMVdX2UKGgGaAloD0MIXaj8a/nvbECUhpRSlGgVTUsCaBZHQJxzNF8XvYx1fZQoaAZoCWgPQwje/8cJE/ZxQJSGlFKUaBVNTgFoFkdAnHNZ8WsRx3V9lChoBmgJaA9DCNWvdD48eXBAlIaUUpRoFU0pAWgWR0Ccc/P4mCyydX2UKGgGaAloD0MIA5gycICycUCUhpRSlGgVTSgBaBZHQJx1dIg/1QJ1fZQoaAZoCWgPQwhHdqVlpFBtQJSGlFKUaBVNFQJoFkdAnHYHXI2fkHV9lChoBmgJaA9DCPdWJCao2W1AlIaUUpRoFU06AWgWR0CcdhpmVZ9vdX2UKGgGaAloD0MIuTMTDKc6cECUhpRSlGgVTTEBaBZHQJx2POY6XBx1fZQoaAZoCWgPQwiOHyqNGOdwQJSGlFKUaBVNBwFoFkdAnHZhrFfiP3V9lChoBmgJaA9DCCEiNe3iIXFAlIaUUpRoFU0gAWgWR0CceHIppeu3dX2UKGgGaAloD0MIWd/A5MbvcECUhpRSlGgVTUIBaBZHQJx4yq94/u91fZQoaAZoCWgPQwhDIJc4cp1vQJSGlFKUaBVNOQFoFkdAnHjeuRs/IXV9lChoBmgJaA9DCFg5tMh2NG1AlIaUUpRoFU0XAWgWR0CceYtI065odX2UKGgGaAloD0MIpkboZ+p2ckCUhpRSlGgVTZcBaBZHQJx8TT+ee4F1fZQoaAZoCWgPQwiEZ0KTRONvQJSGlFKUaBVNFQFoFkdAnH0Mh1Tzd3V9lChoBmgJaA9DCBN9PsoI4nBAlIaUUpRoFU0kAWgWR0CcfUf6GgzydX2UKGgGaAloD0MICWzOwbPNbkCUhpRSlGgVTSIBaBZHQJx+TokiUxF1fZQoaAZoCWgPQwh/Ep87wSJvQJSGlFKUaBVNOQFoFkdAnH6LZWaMJnV9lChoBmgJaA9DCMDqyJHO5G5AlIaUUpRoFU0PAWgWR0CcfyoK2KEWdX2UKGgGaAloD0MIomDGFCxpbECUhpRSlGgVTQcBaBZHQJx/qA4GUwB1fZQoaAZoCWgPQwhHWipvRz5yQJSGlFKUaBVNFgFoFkdAnIAHokiUxHV9lChoBmgJaA9DCCNnYU97qXFAlIaUUpRoFU0VAWgWR0CcgEsZpBX0dX2UKGgGaAloD0MInigJiXRtcUCUhpRSlGgVTSUBaBZHQJyAeIwdsBR1fZQoaAZoCWgPQwi/DMaIRNRcQJSGlFKUaBVN6ANoFkdAnIEOHi3ocXV9lChoBmgJaA9DCHmu78NBw3BAlIaUUpRoFU0RAWgWR0CcgeaaCtihdX2UKGgGaAloD0MIy9WPTfJxbUCUhpRSlGgVTSMBaBZHQJyCuAZsKsx1fZQoaAZoCWgPQwhyFYvfFHFxQJSGlFKUaBVNMQFoFkdAnIPAWFev6nV9lChoBmgJaA9DCOJbWDfeEnFAlIaUUpRoFU3RAmgWR0CchQTa0x/NdX2UKGgGaAloD0MI9DehEAEKcECUhpRSlGgVTRYBaBZHQJyFcqFyq+91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7371905add2eb74588cd3d44480ae4870558b721296537b5f2ac3b1080c11b1b
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:160ea85c97ccd42076adef3d2a789e114c78fb9bbf87bbe0765b9a67ea1e0260
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (206 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.16936042886596, "std_reward": 20.276622431352003, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T22:33:22.695645"}
|