File size: 7,347 Bytes
db26c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import json

from greedrl.feature import *
from greedrl.variable import *
from greedrl.function import *
from greedrl import Problem

features = [local_category('task_order'),
            global_category('task_type', 2),
            global_category('task_new_order', 2),
            variable_feature('time_this_to_task'),
            continuous_feature('x_time_matrix'),
            continuous_feature('task_due_time_x'),
            continuous_feature('worker_task_mask')]

variables = [task_demand_now('task_demand_now', feature='task_demand'),
             task_demand_now('task_demand_this', feature='task_demand', only_this=True),
             task_variable('task_pickup_this', feature='task_pickup'),
             task_variable('task_due_time_this', feature='task_due_time'),
             feature_variable('task_order', feature='task_order'),
             feature_variable('task_type', feature='task_type'),
             feature_variable('task_new_pickup', feature='task_new_pickup'),
             feature_variable('worker_task_mask', feature='worker_task_mask'),
             worker_count_now('worker_count_now', feature='worker_count'),
             worker_variable('worker_min_old_task_this', feature='worker_min_old_task'),
             worker_variable('worker_max_new_order_this', feature='worker_max_new_order'),
             worker_variable('worker_task_mask_this', feature='worker_task_mask'),
             worker_used_resource('worker_used_old_task', task_require='task_old'),
             worker_used_resource('worker_used_new_order', task_require='task_new_pickup'),
             worker_used_resource('worker_used_time', edge_require='time_matrix'),
             edge_variable('time_this_to_task', feature='x_time_matrix', this_to_task=True)]


class Constraint:

    def do_task(self):
        return self.task_demand_this

    def mask_worker_start(self):
        mask = self.worker_count_now <= 0

        finished = self.task_demand_now <= 0
        worker_task_mask = self.worker_task_mask | finished[:, None, :]
        mask |= torch.all(worker_task_mask, 2)

        return mask

    def mask_worker_end(self):
        mask = self.worker_used_old_task < self.worker_min_old_task_this
        mask |= task_group_split(self.task_order, self.task_demand_now <= 0)
        return mask

    def mask_task(self):
        mask = self.task_demand_now <= 0

        mask |= task_group_priority(self.task_order, self.task_type, mask)

        worker_max_new_order = self.worker_max_new_order_this - self.worker_used_new_order
        mask |= self.task_new_pickup > worker_max_new_order[:, None]

        mask |= self.worker_task_mask_this

        return mask

    def finished(self):
        worker_mask = self.worker_count_now <= 0
        task_mask = self.task_demand_now <= 0
        worker_task_mask = worker_mask[:, :, None] | task_mask[:, None, :]

        worker_task_mask |= self.worker_task_mask
        batch_size = worker_task_mask.size(0)
        worker_task_mask = worker_task_mask.view(batch_size, -1)
        return worker_task_mask.all(1)


class Objective:

    def step_task(self):
        over_time = (self.worker_used_time - self.task_due_time_this).clamp(min=0)
        pickup_time = self.worker_used_time * self.task_pickup_this
        return self.worker_used_time + over_time + pickup_time

    def step_finish(self):
        return self.task_demand_now.sum(1) * 1000


def preprocess(problem):
    NW, NT = problem.worker_task_mask.size()

    worker_task_old = torch.ones(NW, NT, dtype=torch.int32)
    new_task_mask = problem.task_new_order[None, :].expand(NW, NT)
    worker_task_old[new_task_mask] = 0
    worker_task_old[problem.worker_task_mask] = 0
    assert torch.all(worker_task_old.sum(0) <= 1)
    problem.worker_min_old_task = worker_task_old.sum(1)

    problem.worker_count = torch.ones(NW, dtype=torch.int32)
    problem.task_demand = torch.ones(NT, dtype=torch.int32)
    problem.task_pickup = (problem.task_type == 0).to(torch.int32)

    task_old = torch.ones(NT, dtype=torch.int32)
    task_old[problem.task_new_order] = 0
    problem.task_old = task_old

    task_new_pickup = torch.ones(NT, dtype=torch.int32)
    task_new_pickup[problem.task_type >= 1] = 0
    task_new_pickup[~problem.task_new_order] = 0
    problem.task_new_pickup = task_new_pickup

    problem.task_due_time_x = problem.task_due_time.float() / 900
    problem.x_time_matrix = problem.time_matrix.float() / 900

    problem.features = features
    problem.variables = variables
    problem.constraint = Constraint
    problem.objective = Objective

    return problem


def make_problem_from_json(data):
    data = json.loads(data)

    problem = Problem()

    problem.id = data['id']
    problem.task_order = torch.tensor(data['task_order'], dtype=torch.int32)
    problem.task_type = torch.tensor(data['task_type'], dtype=torch.int32)
    problem.task_new_order = torch.tensor(data['task_new_order'], dtype=torch.bool)
    problem.task_due_time = torch.tensor(data['task_due_time'], dtype=torch.int32)

    problem.worker_max_new_order = torch.tensor(data['worker_max_new_order'], dtype=torch.int32)
    problem.worker_task_mask = torch.tensor(data['worker_task_mask'], dtype=torch.bool)
    problem.time_matrix = torch.tensor(data['time_matrix'], dtype=torch.int32)

    NW, NT = problem.worker_task_mask.size()

    assert problem.task_order.size() == (NT,), "task_order size error"
    assert problem.task_type.size() == (NT,), "task_type size error"
    assert problem.task_new_order.size() == (NT,), "task_new_order size error"
    assert problem.task_due_time.size() == (NT,), "task_due_time size error"
    assert problem.worker_max_new_order.size() == (NW,), "worker_max_new_order size error"
    assert problem.time_matrix.size() == (NW + NT, NW + NT), "time_matrix size error"

    return preprocess(problem)


def make_problem(batch_count, batch_size=1, task_count=100):
    assert batch_size == 1
    assert task_count == 100

    NW = 100
    NT = task_count
    NO = NT // 2  # 订单数, 一个订单有pickup, delivery两个任务
    problem_list = []
    for i in range(batch_count):
        problem = Problem()

        # user-provided data
        problem.worker_max_new_order = torch.full((NW,), 2, dtype=torch.int32)

        task_order = torch.arange(NO, dtype=torch.int32)
        problem.task_order = torch.cat([task_order, task_order], 0)

        task_type = torch.zeros(NO, dtype=torch.int32)
        problem.task_type = torch.cat([task_type, task_type + 1], 0)

        problem.task_new_order = torch.ones(NT, dtype=torch.bool)

        task_due_time = torch.randint(1000, 1800, (NO,), dtype=torch.int32)
        problem.task_due_time = torch.cat([task_due_time, task_due_time + 1800], 0)

        worker_task_mask = torch.rand(NW, NO) < 0.9
        problem.worker_task_mask = torch.cat([worker_task_mask, worker_task_mask], 1)

        loc = torch.rand(NW + NT, 2, dtype=torch.float32)
        time_matrix = torch.norm(loc[:, None, :] - loc[None, :, :], dim=2) * 1000
        problem.time_matrix = time_matrix.to(torch.int32)

        problem_list.append(preprocess(problem))

    return problem_list


if __name__ == '__main__':
    import sys
    import os.path as osp
    sys.path.append(osp.join(osp.dirname(__file__), '../'))
    import runner

    runner.run(make_problem)