jdannem6 commited on
Commit
e9b63c8
·
verified ·
1 Parent(s): 57b2e40

Uploaded checkpoint-10000

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: deepseek-ai/deepseek-math-7b-base
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-math-7b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 256,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "up_proj",
26
+ "o_proj",
27
+ "v_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aab34f261a98de791b290961d258ce1c337394b8fe2d500019234dc7c4180daa
3
+ size 599711112
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab88daf52677cfc19be7bdcfe050365a147aa3aef7fcdde412f94c905e860c80
3
+ size 1199663358
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef6245979b31f9f5d2f47b32baad8052995784767aa55ccdf078de848d642ff5
3
+ size 14308
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a5d24d5128a05b47a471c40a60c91fe999c4dde48714503f7c639bd3cafde35
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5,
5
+ "eval_steps": 2000,
6
+ "global_step": 10000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 0.9697519540786743,
14
+ "learning_rate": 1e-06,
15
+ "loss": 0.1629,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 1.3848124742507935,
21
+ "learning_rate": 9.898989898989898e-07,
22
+ "loss": 0.14,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 0.9986572265625,
28
+ "learning_rate": 9.797979797979797e-07,
29
+ "loss": 0.1354,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.02,
34
+ "grad_norm": 0.11438798904418945,
35
+ "learning_rate": 9.696969696969698e-07,
36
+ "loss": 0.1182,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.03,
41
+ "grad_norm": 0.8548241257667542,
42
+ "learning_rate": 9.595959595959596e-07,
43
+ "loss": 0.1192,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "grad_norm": 1.5312464237213135,
49
+ "learning_rate": 9.494949494949495e-07,
50
+ "loss": 0.0997,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "grad_norm": 0.9692059755325317,
56
+ "learning_rate": 9.393939393939395e-07,
57
+ "loss": 0.102,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 0.04,
62
+ "grad_norm": 0.42864611744880676,
63
+ "learning_rate": 9.292929292929292e-07,
64
+ "loss": 0.0901,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.04,
69
+ "grad_norm": 0.852543830871582,
70
+ "learning_rate": 9.191919191919192e-07,
71
+ "loss": 0.0937,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 0.05,
76
+ "grad_norm": 0.5718303322792053,
77
+ "learning_rate": 9.09090909090909e-07,
78
+ "loss": 0.093,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 0.06,
83
+ "grad_norm": 0.9396565556526184,
84
+ "learning_rate": 8.98989898989899e-07,
85
+ "loss": 0.0892,
86
+ "step": 1100
87
+ },
88
+ {
89
+ "epoch": 0.06,
90
+ "grad_norm": 0.08157779276371002,
91
+ "learning_rate": 8.888888888888888e-07,
92
+ "loss": 0.0934,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "grad_norm": 0.8076322078704834,
98
+ "learning_rate": 8.787878787878787e-07,
99
+ "loss": 0.0725,
100
+ "step": 1300
101
+ },
102
+ {
103
+ "epoch": 0.07,
104
+ "grad_norm": 1.5076119899749756,
105
+ "learning_rate": 8.686868686868687e-07,
106
+ "loss": 0.0835,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 0.07,
111
+ "grad_norm": 1.1567238569259644,
112
+ "learning_rate": 8.585858585858586e-07,
113
+ "loss": 0.0747,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 0.08,
118
+ "grad_norm": 0.6817927956581116,
119
+ "learning_rate": 8.484848484848484e-07,
120
+ "loss": 0.0903,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 0.09,
125
+ "grad_norm": 0.6467050313949585,
126
+ "learning_rate": 8.383838383838383e-07,
127
+ "loss": 0.0721,
128
+ "step": 1700
129
+ },
130
+ {
131
+ "epoch": 0.09,
132
+ "grad_norm": 1.8435570001602173,
133
+ "learning_rate": 8.282828282828283e-07,
134
+ "loss": 0.0847,
135
+ "step": 1800
136
+ },
137
+ {
138
+ "epoch": 0.1,
139
+ "grad_norm": 0.6265794634819031,
140
+ "learning_rate": 8.181818181818182e-07,
141
+ "loss": 0.0687,
142
+ "step": 1900
143
+ },
144
+ {
145
+ "epoch": 0.1,
146
+ "grad_norm": 1.360060453414917,
147
+ "learning_rate": 8.08080808080808e-07,
148
+ "loss": 0.0748,
149
+ "step": 2000
150
+ },
151
+ {
152
+ "epoch": 0.1,
153
+ "eval_loss": 0.06745574623346329,
154
+ "eval_runtime": 304.7718,
155
+ "eval_samples_per_second": 3.281,
156
+ "eval_steps_per_second": 0.82,
157
+ "step": 2000
158
+ },
159
+ {
160
+ "epoch": 0.1,
161
+ "grad_norm": 0.5074820518493652,
162
+ "learning_rate": 7.97979797979798e-07,
163
+ "loss": 0.0699,
164
+ "step": 2100
165
+ },
166
+ {
167
+ "epoch": 0.11,
168
+ "grad_norm": 1.3634223937988281,
169
+ "learning_rate": 7.878787878787878e-07,
170
+ "loss": 0.0682,
171
+ "step": 2200
172
+ },
173
+ {
174
+ "epoch": 0.12,
175
+ "grad_norm": 3.0763113498687744,
176
+ "learning_rate": 7.777777777777778e-07,
177
+ "loss": 0.0786,
178
+ "step": 2300
179
+ },
180
+ {
181
+ "epoch": 0.12,
182
+ "grad_norm": 1.5437021255493164,
183
+ "learning_rate": 7.676767676767675e-07,
184
+ "loss": 0.065,
185
+ "step": 2400
186
+ },
187
+ {
188
+ "epoch": 0.12,
189
+ "grad_norm": 1.5890172719955444,
190
+ "learning_rate": 7.575757575757575e-07,
191
+ "loss": 0.0772,
192
+ "step": 2500
193
+ },
194
+ {
195
+ "epoch": 0.13,
196
+ "grad_norm": 0.9904383420944214,
197
+ "learning_rate": 7.474747474747475e-07,
198
+ "loss": 0.0735,
199
+ "step": 2600
200
+ },
201
+ {
202
+ "epoch": 0.14,
203
+ "grad_norm": 0.9233341813087463,
204
+ "learning_rate": 7.373737373737373e-07,
205
+ "loss": 0.0695,
206
+ "step": 2700
207
+ },
208
+ {
209
+ "epoch": 0.14,
210
+ "grad_norm": 0.10603007674217224,
211
+ "learning_rate": 7.272727272727272e-07,
212
+ "loss": 0.0595,
213
+ "step": 2800
214
+ },
215
+ {
216
+ "epoch": 0.14,
217
+ "grad_norm": 0.9929779767990112,
218
+ "learning_rate": 7.171717171717171e-07,
219
+ "loss": 0.0595,
220
+ "step": 2900
221
+ },
222
+ {
223
+ "epoch": 0.15,
224
+ "grad_norm": 0.4711184799671173,
225
+ "learning_rate": 7.07070707070707e-07,
226
+ "loss": 0.0606,
227
+ "step": 3000
228
+ },
229
+ {
230
+ "epoch": 0.15,
231
+ "grad_norm": 0.5627967715263367,
232
+ "learning_rate": 6.96969696969697e-07,
233
+ "loss": 0.0713,
234
+ "step": 3100
235
+ },
236
+ {
237
+ "epoch": 0.16,
238
+ "grad_norm": 0.7645086646080017,
239
+ "learning_rate": 6.868686868686868e-07,
240
+ "loss": 0.0672,
241
+ "step": 3200
242
+ },
243
+ {
244
+ "epoch": 0.17,
245
+ "grad_norm": 0.8071433901786804,
246
+ "learning_rate": 6.767676767676767e-07,
247
+ "loss": 0.0809,
248
+ "step": 3300
249
+ },
250
+ {
251
+ "epoch": 0.17,
252
+ "grad_norm": 1.281545877456665,
253
+ "learning_rate": 6.666666666666666e-07,
254
+ "loss": 0.0577,
255
+ "step": 3400
256
+ },
257
+ {
258
+ "epoch": 0.17,
259
+ "grad_norm": 1.15431547164917,
260
+ "learning_rate": 6.565656565656566e-07,
261
+ "loss": 0.0613,
262
+ "step": 3500
263
+ },
264
+ {
265
+ "epoch": 0.18,
266
+ "grad_norm": 0.42522451281547546,
267
+ "learning_rate": 6.464646464646465e-07,
268
+ "loss": 0.0531,
269
+ "step": 3600
270
+ },
271
+ {
272
+ "epoch": 0.18,
273
+ "grad_norm": 1.2078278064727783,
274
+ "learning_rate": 6.363636363636363e-07,
275
+ "loss": 0.0692,
276
+ "step": 3700
277
+ },
278
+ {
279
+ "epoch": 0.19,
280
+ "grad_norm": 2.207512855529785,
281
+ "learning_rate": 6.262626262626263e-07,
282
+ "loss": 0.0508,
283
+ "step": 3800
284
+ },
285
+ {
286
+ "epoch": 0.2,
287
+ "grad_norm": 1.696768045425415,
288
+ "learning_rate": 6.161616161616161e-07,
289
+ "loss": 0.0655,
290
+ "step": 3900
291
+ },
292
+ {
293
+ "epoch": 0.2,
294
+ "grad_norm": 0.6295761466026306,
295
+ "learning_rate": 6.060606060606061e-07,
296
+ "loss": 0.0577,
297
+ "step": 4000
298
+ },
299
+ {
300
+ "epoch": 0.2,
301
+ "eval_loss": 0.057661667466163635,
302
+ "eval_runtime": 304.4519,
303
+ "eval_samples_per_second": 3.285,
304
+ "eval_steps_per_second": 0.821,
305
+ "step": 4000
306
+ },
307
+ {
308
+ "epoch": 0.2,
309
+ "grad_norm": 1.7527456283569336,
310
+ "learning_rate": 5.959595959595959e-07,
311
+ "loss": 0.0575,
312
+ "step": 4100
313
+ },
314
+ {
315
+ "epoch": 0.21,
316
+ "grad_norm": 2.4716615676879883,
317
+ "learning_rate": 5.858585858585858e-07,
318
+ "loss": 0.0768,
319
+ "step": 4200
320
+ },
321
+ {
322
+ "epoch": 0.21,
323
+ "grad_norm": 0.5344067215919495,
324
+ "learning_rate": 5.757575757575758e-07,
325
+ "loss": 0.0571,
326
+ "step": 4300
327
+ },
328
+ {
329
+ "epoch": 0.22,
330
+ "grad_norm": 0.9244055151939392,
331
+ "learning_rate": 5.656565656565657e-07,
332
+ "loss": 0.0563,
333
+ "step": 4400
334
+ },
335
+ {
336
+ "epoch": 0.23,
337
+ "grad_norm": 1.16805100440979,
338
+ "learning_rate": 5.555555555555555e-07,
339
+ "loss": 0.0629,
340
+ "step": 4500
341
+ },
342
+ {
343
+ "epoch": 0.23,
344
+ "grad_norm": 1.6229370832443237,
345
+ "learning_rate": 5.454545454545454e-07,
346
+ "loss": 0.0641,
347
+ "step": 4600
348
+ },
349
+ {
350
+ "epoch": 0.23,
351
+ "grad_norm": 0.9978136420249939,
352
+ "learning_rate": 5.353535353535354e-07,
353
+ "loss": 0.0642,
354
+ "step": 4700
355
+ },
356
+ {
357
+ "epoch": 0.24,
358
+ "grad_norm": 0.4647519886493683,
359
+ "learning_rate": 5.252525252525253e-07,
360
+ "loss": 0.0661,
361
+ "step": 4800
362
+ },
363
+ {
364
+ "epoch": 0.24,
365
+ "grad_norm": 1.3375582695007324,
366
+ "learning_rate": 5.152525252525253e-07,
367
+ "loss": 0.0595,
368
+ "step": 4900
369
+ },
370
+ {
371
+ "epoch": 0.25,
372
+ "grad_norm": 0.08847852051258087,
373
+ "learning_rate": 5.051515151515151e-07,
374
+ "loss": 0.0461,
375
+ "step": 5000
376
+ },
377
+ {
378
+ "epoch": 0.26,
379
+ "grad_norm": 1.0537497997283936,
380
+ "learning_rate": 4.95050505050505e-07,
381
+ "loss": 0.0494,
382
+ "step": 5100
383
+ },
384
+ {
385
+ "epoch": 0.26,
386
+ "grad_norm": 0.9269624948501587,
387
+ "learning_rate": 4.849494949494949e-07,
388
+ "loss": 0.0714,
389
+ "step": 5200
390
+ },
391
+ {
392
+ "epoch": 0.27,
393
+ "grad_norm": 0.7937563061714172,
394
+ "learning_rate": 4.748484848484848e-07,
395
+ "loss": 0.065,
396
+ "step": 5300
397
+ },
398
+ {
399
+ "epoch": 0.27,
400
+ "grad_norm": 1.4173548221588135,
401
+ "learning_rate": 4.6474747474747473e-07,
402
+ "loss": 0.0496,
403
+ "step": 5400
404
+ },
405
+ {
406
+ "epoch": 0.28,
407
+ "grad_norm": 0.37847477197647095,
408
+ "learning_rate": 4.546464646464646e-07,
409
+ "loss": 0.0651,
410
+ "step": 5500
411
+ },
412
+ {
413
+ "epoch": 0.28,
414
+ "grad_norm": 0.7063392400741577,
415
+ "learning_rate": 4.445454545454545e-07,
416
+ "loss": 0.0562,
417
+ "step": 5600
418
+ },
419
+ {
420
+ "epoch": 0.28,
421
+ "grad_norm": 0.6490029096603394,
422
+ "learning_rate": 4.344444444444444e-07,
423
+ "loss": 0.0695,
424
+ "step": 5700
425
+ },
426
+ {
427
+ "epoch": 0.29,
428
+ "grad_norm": 0.8921324610710144,
429
+ "learning_rate": 4.2434343434343434e-07,
430
+ "loss": 0.0733,
431
+ "step": 5800
432
+ },
433
+ {
434
+ "epoch": 0.29,
435
+ "grad_norm": 0.5432973504066467,
436
+ "learning_rate": 4.142424242424242e-07,
437
+ "loss": 0.0589,
438
+ "step": 5900
439
+ },
440
+ {
441
+ "epoch": 0.3,
442
+ "grad_norm": 0.017520183697342873,
443
+ "learning_rate": 4.041414141414141e-07,
444
+ "loss": 0.0541,
445
+ "step": 6000
446
+ },
447
+ {
448
+ "epoch": 0.3,
449
+ "eval_loss": 0.06119654327630997,
450
+ "eval_runtime": 305.9355,
451
+ "eval_samples_per_second": 3.269,
452
+ "eval_steps_per_second": 0.817,
453
+ "step": 6000
454
+ },
455
+ {
456
+ "epoch": 0.3,
457
+ "grad_norm": 2.68011212348938,
458
+ "learning_rate": 3.94040404040404e-07,
459
+ "loss": 0.0568,
460
+ "step": 6100
461
+ },
462
+ {
463
+ "epoch": 0.31,
464
+ "grad_norm": 2.3149752616882324,
465
+ "learning_rate": 3.839393939393939e-07,
466
+ "loss": 0.056,
467
+ "step": 6200
468
+ },
469
+ {
470
+ "epoch": 0.32,
471
+ "grad_norm": 0.04929787665605545,
472
+ "learning_rate": 3.738383838383838e-07,
473
+ "loss": 0.053,
474
+ "step": 6300
475
+ },
476
+ {
477
+ "epoch": 0.32,
478
+ "grad_norm": 0.7595096826553345,
479
+ "learning_rate": 3.6373737373737373e-07,
480
+ "loss": 0.0651,
481
+ "step": 6400
482
+ },
483
+ {
484
+ "epoch": 0.33,
485
+ "grad_norm": 0.08241419494152069,
486
+ "learning_rate": 3.536363636363636e-07,
487
+ "loss": 0.0729,
488
+ "step": 6500
489
+ },
490
+ {
491
+ "epoch": 0.33,
492
+ "grad_norm": 0.7712632417678833,
493
+ "learning_rate": 3.435353535353535e-07,
494
+ "loss": 0.0533,
495
+ "step": 6600
496
+ },
497
+ {
498
+ "epoch": 0.34,
499
+ "grad_norm": 0.8940716981887817,
500
+ "learning_rate": 3.3343434343434343e-07,
501
+ "loss": 0.0583,
502
+ "step": 6700
503
+ },
504
+ {
505
+ "epoch": 0.34,
506
+ "grad_norm": 0.07956444472074509,
507
+ "learning_rate": 3.233333333333333e-07,
508
+ "loss": 0.058,
509
+ "step": 6800
510
+ },
511
+ {
512
+ "epoch": 0.34,
513
+ "grad_norm": 0.6199010610580444,
514
+ "learning_rate": 3.1323232323232326e-07,
515
+ "loss": 0.0568,
516
+ "step": 6900
517
+ },
518
+ {
519
+ "epoch": 0.35,
520
+ "grad_norm": 0.5326449275016785,
521
+ "learning_rate": 3.031313131313131e-07,
522
+ "loss": 0.0525,
523
+ "step": 7000
524
+ },
525
+ {
526
+ "epoch": 0.35,
527
+ "grad_norm": 0.6375436186790466,
528
+ "learning_rate": 2.9303030303030304e-07,
529
+ "loss": 0.0523,
530
+ "step": 7100
531
+ },
532
+ {
533
+ "epoch": 0.36,
534
+ "grad_norm": 1.2404210567474365,
535
+ "learning_rate": 2.829292929292929e-07,
536
+ "loss": 0.0589,
537
+ "step": 7200
538
+ },
539
+ {
540
+ "epoch": 0.36,
541
+ "grad_norm": 1.2247310876846313,
542
+ "learning_rate": 2.728282828282828e-07,
543
+ "loss": 0.0586,
544
+ "step": 7300
545
+ },
546
+ {
547
+ "epoch": 0.37,
548
+ "grad_norm": 0.5559460520744324,
549
+ "learning_rate": 2.6272727272727273e-07,
550
+ "loss": 0.0578,
551
+ "step": 7400
552
+ },
553
+ {
554
+ "epoch": 0.38,
555
+ "grad_norm": 0.2506352961063385,
556
+ "learning_rate": 2.5262626262626265e-07,
557
+ "loss": 0.0555,
558
+ "step": 7500
559
+ },
560
+ {
561
+ "epoch": 0.38,
562
+ "grad_norm": 0.7911235094070435,
563
+ "learning_rate": 2.425252525252525e-07,
564
+ "loss": 0.0641,
565
+ "step": 7600
566
+ },
567
+ {
568
+ "epoch": 0.39,
569
+ "grad_norm": 0.21588227152824402,
570
+ "learning_rate": 2.324242424242424e-07,
571
+ "loss": 0.068,
572
+ "step": 7700
573
+ },
574
+ {
575
+ "epoch": 0.39,
576
+ "grad_norm": 0.5807000994682312,
577
+ "learning_rate": 2.223232323232323e-07,
578
+ "loss": 0.061,
579
+ "step": 7800
580
+ },
581
+ {
582
+ "epoch": 0.4,
583
+ "grad_norm": 2.298220157623291,
584
+ "learning_rate": 2.122222222222222e-07,
585
+ "loss": 0.0594,
586
+ "step": 7900
587
+ },
588
+ {
589
+ "epoch": 0.4,
590
+ "grad_norm": 1.0665823221206665,
591
+ "learning_rate": 2.021212121212121e-07,
592
+ "loss": 0.052,
593
+ "step": 8000
594
+ },
595
+ {
596
+ "epoch": 0.4,
597
+ "eval_loss": 0.050024934113025665,
598
+ "eval_runtime": 304.3337,
599
+ "eval_samples_per_second": 3.286,
600
+ "eval_steps_per_second": 0.821,
601
+ "step": 8000
602
+ },
603
+ {
604
+ "epoch": 0.41,
605
+ "grad_norm": 0.76180499792099,
606
+ "learning_rate": 1.92020202020202e-07,
607
+ "loss": 0.0611,
608
+ "step": 8100
609
+ },
610
+ {
611
+ "epoch": 0.41,
612
+ "grad_norm": 0.549780547618866,
613
+ "learning_rate": 1.8191919191919193e-07,
614
+ "loss": 0.0612,
615
+ "step": 8200
616
+ },
617
+ {
618
+ "epoch": 0.41,
619
+ "grad_norm": 2.0332558155059814,
620
+ "learning_rate": 1.7181818181818182e-07,
621
+ "loss": 0.0545,
622
+ "step": 8300
623
+ },
624
+ {
625
+ "epoch": 0.42,
626
+ "grad_norm": 0.8247748017311096,
627
+ "learning_rate": 1.617171717171717e-07,
628
+ "loss": 0.0616,
629
+ "step": 8400
630
+ },
631
+ {
632
+ "epoch": 0.42,
633
+ "grad_norm": 1.0830433368682861,
634
+ "learning_rate": 1.5161616161616162e-07,
635
+ "loss": 0.0553,
636
+ "step": 8500
637
+ },
638
+ {
639
+ "epoch": 0.43,
640
+ "grad_norm": 0.06752818822860718,
641
+ "learning_rate": 1.4151515151515151e-07,
642
+ "loss": 0.044,
643
+ "step": 8600
644
+ },
645
+ {
646
+ "epoch": 0.43,
647
+ "grad_norm": 2.645291805267334,
648
+ "learning_rate": 1.3141414141414143e-07,
649
+ "loss": 0.049,
650
+ "step": 8700
651
+ },
652
+ {
653
+ "epoch": 0.44,
654
+ "grad_norm": 0.5109922289848328,
655
+ "learning_rate": 1.2141414141414142e-07,
656
+ "loss": 0.0597,
657
+ "step": 8800
658
+ },
659
+ {
660
+ "epoch": 0.45,
661
+ "grad_norm": 1.7064566612243652,
662
+ "learning_rate": 1.1131313131313131e-07,
663
+ "loss": 0.0731,
664
+ "step": 8900
665
+ },
666
+ {
667
+ "epoch": 0.45,
668
+ "grad_norm": 0.9522804617881775,
669
+ "learning_rate": 1.0121212121212121e-07,
670
+ "loss": 0.0641,
671
+ "step": 9000
672
+ },
673
+ {
674
+ "epoch": 0.46,
675
+ "grad_norm": 0.425570011138916,
676
+ "learning_rate": 9.111111111111112e-08,
677
+ "loss": 0.0531,
678
+ "step": 9100
679
+ },
680
+ {
681
+ "epoch": 0.46,
682
+ "grad_norm": 1.16694176197052,
683
+ "learning_rate": 8.1010101010101e-08,
684
+ "loss": 0.0517,
685
+ "step": 9200
686
+ },
687
+ {
688
+ "epoch": 0.47,
689
+ "grad_norm": 0.6792075634002686,
690
+ "learning_rate": 7.090909090909091e-08,
691
+ "loss": 0.0644,
692
+ "step": 9300
693
+ },
694
+ {
695
+ "epoch": 0.47,
696
+ "grad_norm": 1.2597424983978271,
697
+ "learning_rate": 6.080808080808081e-08,
698
+ "loss": 0.0528,
699
+ "step": 9400
700
+ },
701
+ {
702
+ "epoch": 0.47,
703
+ "grad_norm": 4.67294454574585,
704
+ "learning_rate": 5.0707070707070707e-08,
705
+ "loss": 0.0559,
706
+ "step": 9500
707
+ },
708
+ {
709
+ "epoch": 0.48,
710
+ "grad_norm": 1.676389455795288,
711
+ "learning_rate": 4.06060606060606e-08,
712
+ "loss": 0.0589,
713
+ "step": 9600
714
+ },
715
+ {
716
+ "epoch": 0.48,
717
+ "grad_norm": 2.2427666187286377,
718
+ "learning_rate": 3.0505050505050505e-08,
719
+ "loss": 0.0645,
720
+ "step": 9700
721
+ },
722
+ {
723
+ "epoch": 0.49,
724
+ "grad_norm": 0.02416997402906418,
725
+ "learning_rate": 2.0404040404040402e-08,
726
+ "loss": 0.0453,
727
+ "step": 9800
728
+ },
729
+ {
730
+ "epoch": 0.49,
731
+ "grad_norm": 2.5054471492767334,
732
+ "learning_rate": 1.0303030303030303e-08,
733
+ "loss": 0.0491,
734
+ "step": 9900
735
+ },
736
+ {
737
+ "epoch": 0.5,
738
+ "grad_norm": 0.6195088028907776,
739
+ "learning_rate": 2.0202020202020202e-10,
740
+ "loss": 0.054,
741
+ "step": 10000
742
+ },
743
+ {
744
+ "epoch": 0.5,
745
+ "eval_loss": 0.059650979936122894,
746
+ "eval_runtime": 304.5847,
747
+ "eval_samples_per_second": 3.283,
748
+ "eval_steps_per_second": 0.821,
749
+ "step": 10000
750
+ }
751
+ ],
752
+ "logging_steps": 100,
753
+ "max_steps": 10000,
754
+ "num_input_tokens_seen": 0,
755
+ "num_train_epochs": 1,
756
+ "save_steps": 1000,
757
+ "total_flos": 8.1602751234048e+17,
758
+ "train_batch_size": 4,
759
+ "trial_name": null,
760
+ "trial_params": null
761
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:248b0ebf1fbefbcf8838f5e2bceb96ade828e71616bf34f531f6b77403339857
3
+ size 4920