Model save
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: re-irr-sv-agr-lstm-3
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# re-irr-sv-agr-lstm-3
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 3.9915
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 32
|
37 |
+
- eval_batch_size: 32
|
38 |
+
- seed: 3
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- training_steps: 3052726
|
42 |
+
|
43 |
+
### Training results
|
44 |
+
|
45 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
46 |
+
|:-------------:|:-----:|:-------:|:---------------:|
|
47 |
+
| 4.7907 | 0.03 | 76320 | 4.7798 |
|
48 |
+
| 4.5038 | 1.03 | 152640 | 4.4972 |
|
49 |
+
| 4.363 | 2.03 | 228960 | 4.3638 |
|
50 |
+
| 4.2777 | 0.03 | 305280 | 4.2803 |
|
51 |
+
| 4.2145 | 1.03 | 381600 | 4.2236 |
|
52 |
+
| 4.1703 | 2.03 | 457920 | 4.1822 |
|
53 |
+
| 4.133 | 0.03 | 534240 | 4.1512 |
|
54 |
+
| 4.0977 | 1.03 | 610560 | 4.1264 |
|
55 |
+
| 4.0708 | 2.03 | 686880 | 4.1068 |
|
56 |
+
| 4.0454 | 0.03 | 763200 | 4.0905 |
|
57 |
+
| 4.0224 | 1.03 | 839520 | 4.0775 |
|
58 |
+
| 4.01 | 0.03 | 915840 | 4.0666 |
|
59 |
+
| 3.996 | 1.03 | 992160 | 4.0564 |
|
60 |
+
| 3.9765 | 0.03 | 1068480 | 4.0495 |
|
61 |
+
| 3.9628 | 1.03 | 1144800 | 4.0427 |
|
62 |
+
| 3.946 | 0.03 | 1221120 | 4.0360 |
|
63 |
+
| 3.9308 | 0.03 | 1297440 | 4.0311 |
|
64 |
+
| 3.9241 | 1.03 | 1373760 | 4.0266 |
|
65 |
+
| 3.9126 | 2.03 | 1450080 | 4.0231 |
|
66 |
+
| 3.9133 | 0.03 | 1526400 | 4.0196 |
|
67 |
+
| 3.9074 | 1.03 | 1602720 | 4.0172 |
|
68 |
+
| 3.9082 | 0.03 | 1679040 | 4.0140 |
|
69 |
+
| 3.9023 | 1.03 | 1755360 | 4.0115 |
|
70 |
+
| 3.8936 | 0.03 | 1831680 | 4.0096 |
|
71 |
+
| 3.886 | 1.03 | 1908000 | 4.0071 |
|
72 |
+
| 3.8806 | 0.03 | 1984320 | 4.0050 |
|
73 |
+
| 3.8726 | 1.03 | 2060640 | 4.0030 |
|
74 |
+
| 3.8738 | 2.03 | 2136960 | 4.0020 |
|
75 |
+
| 3.8718 | 0.03 | 2213280 | 4.0006 |
|
76 |
+
| 3.8638 | 1.03 | 2289600 | 3.9990 |
|
77 |
+
| 3.8573 | 2.03 | 2365920 | 3.9973 |
|
78 |
+
| 3.8484 | 0.03 | 2442240 | 3.9964 |
|
79 |
+
| 3.8425 | 1.03 | 2518560 | 3.9954 |
|
80 |
+
| 3.8384 | 0.03 | 2594880 | 3.9946 |
|
81 |
+
| 3.8355 | 1.03 | 2671200 | 3.9941 |
|
82 |
+
| 3.8391 | 2.03 | 2747520 | 3.9933 |
|
83 |
+
| 3.8404 | 0.03 | 2823840 | 3.9928 |
|
84 |
+
| 3.8431 | 1.03 | 2900160 | 3.9923 |
|
85 |
+
| 3.843 | 0.03 | 2976480 | 3.9919 |
|
86 |
+
| 3.8394 | 1.02 | 3052726 | 3.9915 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.33.3
|
92 |
+
- Pytorch 2.0.1
|
93 |
+
- Datasets 2.12.0
|
94 |
+
- Tokenizers 0.13.3
|