File size: 24,291 Bytes
1142221 b60ff27 1142221 b60ff27 1142221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-32B-Instruct
pipeline_tag: text-generation
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
model_creator: Qwen
model_name: Qwen2.5-Coder-32B-Instruct
model_type: qwen2
datasets:
- m-a-p/CodeFeedback-Filtered-Instruction
quantized_by: CISC
---
# Qwen2.5-Coder-32B-Instruct - SOTA GGUF
- Model creator: [Qwen](https://huggingface.co/Qwen)
- Original model: [Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)
<!-- description start -->
## Description
This repo contains State Of The Art quantized GGUF format model files for [Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct).
Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of answers from the [CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) dataset.
Fill-in-Middle tokens are automatically detected and supported as of commit [11ac980](https://github.com/ggerganov/llama.cpp/commit/11ac9800aff532715a5bc7991062c68ba3472e6e), see [example](#simple-llama-cpp-python-example-fill-in-middle-code).
**Update January 6th 2025**: Added links to full context YaRN-enabled GGUFs (using [GGUF Editor](https://huggingface.co/spaces/CISCai/gguf-editor)).
<!-- description end -->
<!-- prompt-template start -->
## Prompt template: ChatML
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv3 files are compatible with llama.cpp from February 27th 2024 onwards, as of commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307)
They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
* GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
* GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
* GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
* GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
* GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
* GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
* GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
* GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
* GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
* GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
* GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [Qwen2.5-Coder-32B-Instruct.IQ1_S.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ1_S.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ1_S.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ1_S | 1 | 6.8 GB| 7.8 GB | smallest, significant quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ1_M.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ1_M.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ1_M.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ1_M | 1 | 7.4 GB| 8.4 GB | very small, significant quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ2_XXS.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ2_XXS.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ2_XXS.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ2_XXS | 2 | 8.4 GB| 9.4 GB | very small, high quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ2_XS.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ2_XS.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ2_XS.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ2_XS | 2 | 9.3 GB| 10.3 GB | very small, high quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ2_S.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ2_S.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ2_S.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ2_S | 2 | 9.7 GB| 10.7 GB | small, substantial quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ2_M.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ2_M.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ2_M.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ2_M | 2 | 10.5 GB| 11.5 GB | small, greater quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ3_XXS.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ3_XXS.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ3_XXS.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ3_XXS | 3 | 11.9 GB| 12.9 GB | very small, high quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ3_XS.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ3_XS.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ3_XS.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ3_XS | 3 | 12.8 GB| 13.8 GB | small, substantial quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ3_S.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ3_S.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ3_S.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ3_S | 3 | 13.4 GB| 14.4 GB | small, greater quality loss |
| [Qwen2.5-Coder-32B-Instruct.IQ3_M.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ3_M.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ3_M.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ3_M | 3 | 13.8 GB| 14.8 GB | medium, balanced quality - recommended |
| [Qwen2.5-Coder-32B-Instruct.IQ4_XS.gguf](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.IQ4_XS.gguf) ([with YaRN](https://ciscai-gguf-editor.hf.space/download/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/Qwen2.5-Coder-32B-Instruct.IQ4_XS.gguf?branch=main&add=%5B%22qwen2.context_length%22,4,131072%5D&add=%5B%22qwen2.rope.scaling.type%22,8,%22yarn%22%5D&add=%5B%22qwen2.rope.scaling.factor%22,6,4%5D&add=%5B%22qwen2.rope.scaling.original_context_length%22,4,32768%5D)) | IQ4_XS | 4 | 16.5 GB| 17.5 GB | small, substantial quality loss |
Generated importance matrix file: [Qwen2.5-Coder-32B-Instruct.imatrix.dat](https://huggingface.co/CISCai/Qwen2.5-Coder-32B-Instruct-SOTA-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct.imatrix.dat)
**Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307) or later.
```shell
./llama-cli -ngl 65 -m Qwen2.5-Coder-32B-Instruct.IQ4_XS.gguf --color -c 131072 --temp 0.7 --top-p 0.8 --top-k 20 --repeat-penalty 1.05 -p "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
```
Change `-ngl 65` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 131072` to the desired sequence length.
If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size).
There is a similar option for V-cache (`-ctv`), only available if you enable Flash Attention (`-fa`) as well.
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Prebuilt wheel with basic CPU support
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# Prebuilt wheel with NVidia CUDA acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
# Prebuilt wheel with Metal GPU acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
# Build base version with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python
# Or with Vulkan acceleration
CMAKE_ARGS="-DGGML_VULKAN=on" pip install llama-cpp-python
# Or with SYCL acceleration
CMAKE_ARGS="-DGGML_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DGGML_CUDA=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Chat Completion API
llm = Llama(model_path="./Qwen2.5-Coder-32B-Instruct.IQ4_XS.gguf", n_gpu_layers=65, n_ctx=131072)
print(llm.create_chat_completion(
repeat_penalty = 1.05,
messages = [
{
"role": "user",
"content": "Pick a LeetCode challenge and solve it in Python."
}
]
))
```
#### Simple llama-cpp-python example fill-in-middle code
```python
from llama_cpp import Llama
# Completion API
prompt = "def add("
suffix = "\n return sum\n\n"
llm = Llama(model_path="./Qwen2.5-Coder-32B-Instruct.IQ4_XS.gguf", n_gpu_layers=65, n_ctx=131072)
output = llm.create_completion(
temperature = 0.0,
repeat_penalty = 1.0,
prompt = prompt,
suffix = suffix
)
# Models sometimes repeat suffix in response, attempt to filter that
response = output["choices"][0]["text"]
response_stripped = response.rstrip()
unwanted_response_suffix = suffix.rstrip()
unwanted_response_length = len(unwanted_response_suffix)
filtered = False
if unwanted_response_suffix and response_stripped[-unwanted_response_length:] == unwanted_response_suffix:
response = response_stripped[:-unwanted_response_length]
filtered = True
print(f"Fill-in-Middle completion{' (filtered)' if filtered else ''}:\n\n{prompt}\033[32m{response}\033[{'33' if filtered else '0'}m{suffix}\033[0m")
```
#### Simple llama-cpp-python example function calling code
```python
from llama_cpp import Llama
# Chat Completion API
grammar = LlamaGrammar.from_json_schema(json.dumps({
"type": "array",
"items": {
"type": "object",
"required": [ "name", "arguments" ],
"properties": {
"name": {
"type": "string"
},
"arguments": {
"type": "object"
}
}
}
}))
llm = Llama(model_path="./Qwen2.5-Coder-32B-Instruct.IQ4_XS.gguf", n_gpu_layers=65, n_ctx=131072)
response = llm.create_chat_completion(
temperature = 0.0,
repeat_penalty = 1.05,
messages = [
{
"role": "user",
"content": "What's the weather like in Oslo and Stockholm?"
}
],
tools=[{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [ "celsius", "fahrenheit" ]
}
},
"required": [ "location" ]
}
}
}],
grammar = grammar
)
print(json.loads(response["choices"][0]["text"]))
print(llm.create_chat_completion(
temperature = 0.0,
repeat_penalty = 1.05,
messages = [
{
"role": "user",
"content": "What's the weather like in Oslo?"
},
{ # The tool_calls is from the response to the above with tool_choice active
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": "call__0_get_current_weather_cmpl-...",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": { "location": "Oslo, Norway" , "unit": "celsius" }
}
}
]
},
{ # The tool_call_id is from tool_calls and content is the result from the function call you made
"role": "tool",
"content": "20",
"tool_call_id": "call__0_get_current_weather_cmpl-..."
}
],
tools=[{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [ "celsius", "fahrenheit" ]
}
},
"required": [ "location" ]
}
}
}],
#tool_choice={
# "type": "function",
# "function": {
# "name": "get_current_weather"
# }
#}
))
```
<!-- README_GGUF.md-how-to-run end -->
<!-- original-model-card start -->
# Qwen2.5-Coder-32B-Instruct
## Introduction
Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:
- Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.
- A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.
- **Long-context Support** up to 128K tokens.
**This repo contains the instruction-tuned 32B Qwen2.5-Coder model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186).
## Requirements
The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-Coder-32B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@article{hui2024qwen2,
title={Qwen2. 5-Coder Technical Report},
author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
journal={arXiv preprint arXiv:2409.12186},
year={2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
```
|