Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,197 @@ tags:
|
|
6 |
|
7 |
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
|
8 |
- Library: [More Information Needed]
|
9 |
-
- Docs: [More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
|
8 |
- Library: [More Information Needed]
|
9 |
+
- Docs: [More Information Needed]
|
10 |
+
|
11 |
+
---
|
12 |
+
dataset_info:
|
13 |
+
features:
|
14 |
+
- name: image
|
15 |
+
dtype: image
|
16 |
+
- name: label
|
17 |
+
dtype:
|
18 |
+
class_label:
|
19 |
+
names:
|
20 |
+
'0': test
|
21 |
+
'1': train
|
22 |
+
'2': validation
|
23 |
+
splits:
|
24 |
+
- name: train
|
25 |
+
num_bytes: 7260686.0
|
26 |
+
num_examples: 560
|
27 |
+
- name: validation
|
28 |
+
num_bytes: 182280987.0
|
29 |
+
num_examples: 78
|
30 |
+
- name: test
|
31 |
+
num_bytes: 2290972.0
|
32 |
+
num_examples: 147
|
33 |
+
download_size: 172987254
|
34 |
+
dataset_size: 191832645.0
|
35 |
+
configs:
|
36 |
+
- config_name: default
|
37 |
+
data_files:
|
38 |
+
- split: train
|
39 |
+
path: data/train-*
|
40 |
+
- split: validation
|
41 |
+
path: data/validation-*
|
42 |
+
- split: test
|
43 |
+
path: data/test-*
|
44 |
+
---
|
45 |
+
Model inference:
|
46 |
+
# model
|
47 |
+
|
48 |
+
import os
|
49 |
+
import torch
|
50 |
+
import torch.nn as nn
|
51 |
+
from torch.utils.data import Dataset, DataLoader
|
52 |
+
from PIL import Image
|
53 |
+
from torchvision import transforms
|
54 |
+
import pandas as pd
|
55 |
+
from huggingface_hub import PyTorchModelHubMixin
|
56 |
+
|
57 |
+
# Define the custom dataset
|
58 |
+
class GPSImageDataset(Dataset):
|
59 |
+
def __init__(self, hf_dataset, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):
|
60 |
+
self.hf_dataset = hf_dataset
|
61 |
+
self.transform = transform
|
62 |
+
|
63 |
+
# Compute mean and std from the dataframe if not provided
|
64 |
+
self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array(self.hf_dataset['Latitude']))
|
65 |
+
self.latitude_std = lat_std if lat_std is not None else np.std(np.array(self.hf_dataset['Latitude']))
|
66 |
+
self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array(self.hf_dataset['Longitude']))
|
67 |
+
self.longitude_std = lon_std if lon_std is not None else np.std(np.array(self.hf_dataset['Longitude']))
|
68 |
+
|
69 |
+
def __len__(self):
|
70 |
+
return len(self.hf_dataset)
|
71 |
+
|
72 |
+
def __getitem__(self, idx):
|
73 |
+
# Extract data
|
74 |
+
example = self.hf_dataset[idx]
|
75 |
+
|
76 |
+
# Load and process the image
|
77 |
+
image = example['image']
|
78 |
+
latitude = example['Latitude']
|
79 |
+
longitude = example['Longitude']
|
80 |
+
# image = image.rotate(-90, expand=True)
|
81 |
+
if self.transform:
|
82 |
+
image = self.transform(image)
|
83 |
+
|
84 |
+
# Normalize GPS coordinates
|
85 |
+
latitude = (latitude - self.latitude_mean) / self.latitude_std
|
86 |
+
longitude = (longitude - self.longitude_mean) / self.longitude_std
|
87 |
+
gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
|
88 |
+
|
89 |
+
return image, gps_coords
|
90 |
+
|
91 |
+
|
92 |
+
# Define the CNN model
|
93 |
+
class CustomCNNModel(nn.Module, PyTorchModelHubMixin):
|
94 |
+
def __init__(self, num_classes=2):
|
95 |
+
super(CustomCNNModel, self).__init__()
|
96 |
+
|
97 |
+
# Define the CNN architecture (4 convolutional layers followed by fully connected layers)
|
98 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
|
99 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
100 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
101 |
+
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
|
102 |
+
|
103 |
+
self.pool = nn.MaxPool2d(2, 2)
|
104 |
+
|
105 |
+
# Define the fully connected layers after flattening
|
106 |
+
self.fc1 = nn.Linear(256 * 14 * 14, 512) # Output size after pooling (assuming input image is 224x224)
|
107 |
+
self.fc2 = nn.Linear(512, 256)
|
108 |
+
self.fc3 = nn.Linear(256, num_classes) # Output layer (2 values: latitude and longitude)
|
109 |
+
|
110 |
+
# Activation functions
|
111 |
+
self.relu = nn.ReLU()
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
# Pass through convolutional layers
|
115 |
+
x = self.relu(self.conv1(x))
|
116 |
+
x = self.pool(x)
|
117 |
+
x = self.relu(self.conv2(x))
|
118 |
+
x = self.pool(x)
|
119 |
+
x = self.relu(self.conv3(x))
|
120 |
+
x = self.pool(x)
|
121 |
+
x = self.relu(self.conv4(x))
|
122 |
+
x = self.pool(x)
|
123 |
+
|
124 |
+
# Flatten the tensor before passing it to the fully connected layers
|
125 |
+
x = x.view(-1, 256 * 14 * 14)
|
126 |
+
|
127 |
+
# Pass through fully connected layers
|
128 |
+
x = self.relu(self.fc1(x))
|
129 |
+
x = self.relu(self.fc2(x))
|
130 |
+
x = self.fc3(x)
|
131 |
+
|
132 |
+
return x
|
133 |
+
|
134 |
+
|
135 |
+
# Define transformations for images
|
136 |
+
transform = transforms.Compose([
|
137 |
+
transforms.Resize((224, 224)), # Resize to match the input size of the model
|
138 |
+
transforms.ToTensor(), # Convert image to tensor
|
139 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Optional normalization
|
140 |
+
])
|
141 |
+
|
142 |
+
from datasets import load_dataset
|
143 |
+
|
144 |
+
# loading in data
|
145 |
+
ds = load_dataset("gydou/released_img", split = "train")
|
146 |
+
|
147 |
+
# pulling in weights from hugging face
|
148 |
+
model=CustomCNNModel.from_pretrained("CIS-5190-Project-1/model")
|
149 |
+
|
150 |
+
lat_mean = 35
|
151 |
+
lat_std = 8
|
152 |
+
lon_mean = 70
|
153 |
+
lon_std = 6
|
154 |
+
# Optionally, you can create a separate transform for inference without augmentations
|
155 |
+
inference_transform = transforms.Compose([
|
156 |
+
transforms.Resize((224, 224)),
|
157 |
+
transforms.ToTensor(),
|
158 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
159 |
+
std=[0.229, 0.224, 0.225])
|
160 |
+
])
|
161 |
+
|
162 |
+
val_dataset = GPSImageDataset(
|
163 |
+
hf_dataset=ds,
|
164 |
+
transform=inference_transform,
|
165 |
+
lat_mean=lat_mean,
|
166 |
+
lat_std=lat_std,
|
167 |
+
lon_mean=lon_mean,
|
168 |
+
lon_std=lon_std
|
169 |
+
)
|
170 |
+
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
171 |
+
|
172 |
+
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
173 |
+
|
174 |
+
# Initialize lists to store predictions and actual values
|
175 |
+
all_preds = []
|
176 |
+
all_actuals = []
|
177 |
+
|
178 |
+
model.eval()
|
179 |
+
with torch.no_grad():
|
180 |
+
for images, gps_coords in val_dataloader:
|
181 |
+
images, gps_coords = images.to("cpu"), gps_coords.to("cpu")
|
182 |
+
|
183 |
+
outputs = model(images)
|
184 |
+
|
185 |
+
# Denormalize predictions and actual values
|
186 |
+
preds = outputs.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
|
187 |
+
actuals = gps_coords.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
|
188 |
+
|
189 |
+
all_preds.append(preds)
|
190 |
+
all_actuals.append(actuals)
|
191 |
+
break
|
192 |
+
|
193 |
+
# Concatenate all batches
|
194 |
+
all_preds = torch.cat(all_preds).numpy()
|
195 |
+
all_actuals = torch.cat(all_actuals).numpy()
|
196 |
+
|
197 |
+
# Compute error metrics
|
198 |
+
mae = mean_absolute_error(all_actuals, all_preds)
|
199 |
+
rmse = mean_squared_error(all_actuals, all_preds, squared=False)
|
200 |
+
|
201 |
+
print(f'Mean Absolute Error: {mae}')
|
202 |
+
print(f'Root Mean Squared Error: {rmse}')
|